The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds

被引:0
|
作者
Chen, Bang-Yen [1 ]
Shenawy, Sameh [2 ]
De, Uday Chand [3 ]
Rabie, Alaa [4 ]
Bin Turki, Nasser [5 ]
机构
[1] Michigan State Univ, Dept Math, 619 Red Cedar Rd, E Lansing, MI 48824 USA
[2] Modern Acad Engn & Technol, Basic Sci Dept, Cairo 11571, Egypt
[3] Univ Calcutta, Dept Pure Math, Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[4] Fayoum Univ, Fac Sci, Dept Math, Faiyum 63514, Egypt
[5] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
warped product; quasi-conformal curvature tensor; Ricci-symmetric manifold; divergence-free; Einstein-like manifold; Cartan-symmetric manifold; SPACETIMES; (K;
D O I
10.3390/axioms13080500
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work investigates the effects on the factor manifolds of a singly warped product manifold resulting from the presence of a quasi-conformally flat, quasi-conformally symmetric, or divergence-free quasi-conformal curvature tensor. Quasi-conformally flat warped product manifolds exhibit three distinct scenarios: in one scenario, the base manifold has a constant curvature, while in the other two scenarios, it is quasi-Einstein. Alternatively, the fiber manifold has a constant curvature in two scenarios and is Einstein in one scenario. Quasi-conformally symmetric warped product manifolds present three distinct cases: in the first scenario, the base manifold is Ricci-symmetric and the fiber is Einstein; in the second case, the base manifold is Cartan-symmetric and the fiber has constant curvature; and in the last case, the fiber is Cartan-symmetric, and the Ricci tensor of the base manifold is of Codazzi type. Finally, conditions are provided for singly warped product manifolds that admit a divergence-free quasi-conformal curvature tensor to ensure that the Riemann curvature tensors of the factor manifolds are harmonic.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Sasakian manifolds with quasi-conformal curvature tensor
    De, Uday Chand
    Jun, Jae Bok
    Gazi, Abul Kalam
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 313 - 319
  • [2] QUASI-CONFORMAL CURVATURE TENSOR ON N(k)-QUASI EINSTEIN MANIFOLDS
    Hazra, Dipankar
    Sarkar, Avijit
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 801 - 810
  • [3] On Quasi-Conformally Recurrent Manifolds with Harmonic Quasi-Conformal Curvature Tensor
    Shaikh, Absos Ali
    Roy, Indranil
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2011, 51 (01): : 109 - 124
  • [4] QUASI-CONFORMAL MAPPINGS AND MANIFOLDS OF NEGATIVE CURVATURE
    PANSU, P
    [J]. LECTURE NOTES IN MATHEMATICS, 1986, 1201 : 212 - 229
  • [5] SPACETIMES ADMITTING QUASI-CONFORMAL CURVATURE TENSOR
    Mallick, S.
    Zhao, P.
    De, U. C.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (06) : 1535 - 1546
  • [6] Impact of quasi-conformal curvature tensor in spacetimes and f (R, G)-gravity
    De, Uday Chand
    Hazra, Dipankar
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (05):
  • [7] Generalized Quasi-Conformal Curvature Tensor and the Spacetime of General Relativity
    Babu, S. Girish
    Reddy, P. Siva Kota
    Shivprasanna, G. S.
    Somashekhara, G.
    Alloush, Khaled A. A.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 19 - 19
  • [8] ON THE QUASI-CONFORMAL CURVATURE TENSOR OF A (k, μ)-CONTACT METRIC MANIFOLD
    De, U. C.
    Sarkar, Avijit
    [J]. MATHEMATICAL REPORTS, 2012, 14 (02): : 115 - 129
  • [9] QUASI-CONFORMAL CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS
    Chaturvedi, Braj B.
    Gupta, Brijesh K.
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 89 - 99
  • [10] ON THE QUASI-CONFORMAL CURVATURE TENSOR OF AN ALMOST KENMOTSU MANIFOLD WITH NULLITY DISTRIBUTIONS
    Dey, Dibakar
    Majhi, Pradip
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (02): : 255 - 268