Shapley-based explainable AI for clustering applications in fault diagnosis and prognosis

被引:0
|
作者
Cohen, Joseph [1 ]
Huan, Xun [2 ]
Ni, Jun [2 ]
机构
[1] Univ Michigan, Michigan Inst Data & AI Soc, 500 Church St, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA
关键词
Shapley value analysis; Explainable artificial intelligence; Clustering; Prognostics and health management; ARTIFICIAL-INTELLIGENCE;
D O I
10.1007/s10845-024-02468-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven artificial intelligence models require explainability in intelligent manufacturing to streamline adoption and trust in modern industry. However, recently developed explainable artificial intelligence (XAI) techniques that estimate feature contributions on a model-agnostic level such as SHapley Additive exPlanations (SHAP) have not yet been evaluated for semi-supervised fault diagnosis and prognosis problems characterized by class imbalance and weakly labeled datasets. This paper explores the potential of utilizing Shapley values for a new clustering framework compatible with semi-supervised learning problems, loosening the strict supervision requirement of current XAI techniques. This broad methodology is validated on two case studies: a heatmap image dataset obtained from a semiconductor manufacturing process featuring class imbalance, and the benchmark N-CMAPSS dataset. Semi-supervised clustering based on Shapley values significantly improves upon clustering quality compared to the fully unsupervised case, deriving information-dense and meaningful clusters that relate to underlying fault diagnosis model predictions. These clusters can also be characterized by high-precision decision rules in terms of original feature values, as demonstrated in the second case study. The rules, limited to 2 terms utilizing original feature scales, describe 14 out of the 19 derived equipment failure clusters with average precision exceeding 0.85, showcasing the promising utility of the explainable clustering framework for intelligent manufacturing applications.
引用
收藏
页码:4071 / 4086
页数:16
相关论文
共 50 条
  • [1] Explainable Shapley-Based Allocation (Student Abstract)
    Nizri, Meir
    Hazon, Noam
    Azaria, Amos
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 13023 - 13024
  • [2] BSED: Baseline Shapley-Based Explainable Detector
    Kuroki, Michihiro
    Yamasaki, Toshihiko
    IEEE ACCESS, 2024, 12 : 57959 - 57973
  • [3] An Explainable AI-Based Fault Diagnosis Model for Bearings
    Hasan, Md Junayed
    Sohaib, Muhammad
    Kim, Jong-Myon
    SENSORS, 2021, 21 (12)
  • [4] Explainable AI based Fault Detection and Diagnosis System for Air Handling Units
    Belikov, Juri
    Meas, Molika
    Machlev, Ram
    Kose, Ahmet
    Tepljakov, Aleksei
    Loo, Lauri
    Petlenkov, Eduard
    Levron, Yoash
    PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2022, : 271 - 279
  • [5] Channel Selection for Seizure Detection Based on Explainable AI with Shapley Values
    Ding Y.
    Zhao W.
    IEEE Sensors Journal, 2024, 24 (16) : 1 - 1
  • [6] Explainable AI for Bearing Fault Prognosis Using Deep Learning Techniques
    Sanakkayala, Deva Chaitanya
    Varadarajan, Vijayakumar
    Kumar, Namya
    Karan
    Soni, Girija
    Kamat, Pooja
    Kumar, Satish
    Patil, Shruti
    Kotecha, Ketan
    MICROMACHINES, 2022, 13 (09)
  • [7] XAI-LCS: Explainable AI-Based Fault Diagnosis of Low-Cost Sensors
    Sinha, Aparna
    Das, Debanjan
    IEEE SENSORS LETTERS, 2023, 7 (12) : 1 - 4
  • [8] Explainable AI for Material Property Prediction Based on Energy Cloud: A Shapley-Driven Approach
    Qayyum, Faiza
    Khan, Murad Ali
    Kim, Do-Hyeun
    Ko, Hyunseok
    Ryu, Ga-Ae
    MATERIALS, 2023, 16 (23)
  • [9] Sequential fuzzy clustering based dynamic fuzzy neural network for fault diagnosis and prognosis
    Jahromi, Amin Torabi
    Er, Meng Joo
    Li, Xiang
    Lim, Beng Siong
    NEUROCOMPUTING, 2016, 196 : 31 - 41
  • [10] Explainable AI-Based Ensemble Clustering for Load Profiling and Demand Response
    Sarmas, Elissaios
    Fragkiadaki, Afroditi
    Marinakis, Vangelis
    Energies, 2024, 17 (22)