Probabilistic Multivariate Early Warning Signals

被引:2
|
作者
Laitinen, Ville [1 ]
Lahti, Leo [1 ]
机构
[1] Univ Turku, Dept Comp, Turku, Finland
基金
芬兰科学院;
关键词
Early warning signals; Probabilistic programming; Complex systems; INDICATORS; COLLAPSE; SHIFTS;
D O I
10.1007/978-3-031-15034-0_13
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A broad range of natural and social systems from human microbiome to financial markets can go through critical transitions, where the system suddenly collapses to another stable configuration. Anticipating such transition early and accurately can facilitate controlled system manipulation and mitigation of undesired outcomes. Generic data-driven indicators, such as autocorrelation and variance, have been shown to increase in the vicinity of an approaching tipping point, and statistical early warning signals have been reported across a range of systems. In practice, obtaining reliable predictions has proven to challenging, as the available methods deal with simplified one-dimensional representations of complex systems, and rely on the availability of large amounts of data. Here, we demonstrate that a probabilistic data aggregation strategy can provide new ways to improve early warning detection by more efficiently utilizing the available information from multivariate time series. In particular, we consider a probabilistic variant of a vector autoregression model as a novel early warning indicator and argue that it has certain advantages in model regularization, treatment of uncertainties, and parameter interpretation. We evaluate the performance against alternatives in a simulation benchmark and show improved sensitivity in warning signal detection in a common ecological model encompassing multiple interacting species.
引用
收藏
页码:259 / 274
页数:16
相关论文
共 50 条
  • [1] Probabilistic early warning signals
    Laitinen, Ville
    Dakos, Vasilis
    Lahti, Leo
    ECOLOGY AND EVOLUTION, 2021, 11 (20): : 14101 - 14114
  • [2] EARLY WARNING SIGNALS
    BAUGHMAN, MD
    CONTEMPORARY EDUCATION, 1977, 48 (04): : 192 - 192
  • [3] Generalized early warning signals in multivariate and gridded data with an application to tropical cyclones
    Prettyman, J.
    Kuna, T.
    Livina, V
    CHAOS, 2019, 29 (07)
  • [4] Probabilistic approach to measuring early-warning signals of systemic contagion risk
    Hui, Cho-Hoi
    Lo, Chi-Fai
    Zheng, Xiao-Fen
    Fong, Tom
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2018, 5 (02)
  • [5] Early Warning Signals for Lakes
    不详
    HYDROLOGIE UND WASSERBEWIRTSCHAFTUNG, 2017, 61 (01): : 58 - 58
  • [6] Probabilistic tsunami forecasting for early warning
    Selva, J.
    Lorito, S.
    Volpe, M.
    Romano, F.
    Tonini, R.
    Perfetti, P.
    Bernardi, F.
    Taroni, M.
    Scala, A.
    Babeyko, A.
    Lovholt, F.
    Gibbons, S. J.
    Macias, J.
    Castro, M. J.
    Gonzalez-Vida, J. M.
    Sanchez-Linares, C.
    Bayraktar, H. B.
    Basili, R.
    Maesano, F. E.
    Tiberti, M. M.
    Mele, F.
    Piatanesi, A.
    Amato, A.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Probabilistic tsunami forecasting for early warning
    J. Selva
    S. Lorito
    M. Volpe
    F. Romano
    R. Tonini
    P. Perfetti
    F. Bernardi
    M. Taroni
    A. Scala
    A. Babeyko
    F. Løvholt
    S. J. Gibbons
    J. Macías
    M. J. Castro
    J. M. González-Vida
    C. Sánchez-Linares
    H. B. Bayraktar
    R. Basili
    F. E. Maesano
    M. M. Tiberti
    F. Mele
    A. Piatanesi
    A. Amato
    Nature Communications, 12
  • [8] Early warning signals in motion inference
    Hart, Yuval
    Vaziri-Pashkam, Maryam
    Mahadevan, L.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (05)
  • [9] Early warning signals for war in the news
    Chadefaux, Thomas
    JOURNAL OF PEACE RESEARCH, 2014, 51 (01) : 5 - 18
  • [10] Early warning signals of stochastic switching
    Drake, John M.
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1766)