Revolutionizing Dementia Diagnosis: Integrating DenseNet121 and SVM for Early Detection through MRI Analysis

被引:0
|
作者
Vishwanadham, Y. K. [1 ]
Balaji, Nuthalapati [1 ]
Alla, Vaishnavi [1 ]
Gopi, Rajulapati Venkata Sai [1 ]
Satya, Posina Manideep [1 ]
Dheeraj, Palaparthi [1 ]
机构
[1] Seshadri Rao Gudlavalleru Engn Coll, Dept Informat Technol, Vijayawada, Andhra Pradesh, India
关键词
Dementia; DenseNet121; Support Vector Machine; Machine Learning; EarlyDetection;
D O I
10.1109/ACCAI61061.2024.10601986
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dementia, a debilitating condition affecting cognitive functions, necessitates early detection for effective management. This research introduces an innovative approach to diagnosed ementia by employing machine learning techniques, specifically integrating the Dense Net121 feature extractor and a Support Vector Machine (SVM) classifier.Utilizing a diverse MRI dataset obtained from Kaggle, comprising various stages of dementia, the model demonstrates promising results interms of precision and accuracy. Overcoming limitations of existing systems, the proposed method addresses temporal modeling challenges, imbalanced datasets, and high dimensionality associatedwith MRI data. The Flask web application developed facilitates user-friendly interaction for healthcare professionals, offering a practical tool for efficient dementia diagnosis. The study underscores the significance of early detection in influencing potential treatment strategies and contributes to the broader field of medical diagnostics.The findings highlight the effectiveness of DenseNet121 and SVM integration, show casing the potential of machine learning in conjunction with medical imaging for earlydementiadetection.
引用
收藏
页数:7
相关论文
共 10 条
  • [1] Revolutionizing dementia detection: Leveraging vision and Swin transformers for early diagnosis
    Rini, P. L.
    Gayathri, K. S.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2024, 195 (07)
  • [2] Integrating Genetic Information for Early Alzheimer's Diagnosis through MRI Interpretation
    Lee, Seungeun
    Lee, Jaeyoung
    Lee, Moonhyun
    Choi, Jintak
    Kang, Kyungtae
    Kim, Younghoon
    2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI, 2023,
  • [3] The impact of integrating pelvic MRI at diagnosis on early detection of perianal Crohn's disease in pediatrics
    Antaya, M.
    Hudson, A.
    Lerner, E. P.
    Nasser, K.
    Carroll, M. W.
    Isaac, D.
    Wine, E.
    Perry, T.
    Thompson, A.
    Huynh, H. Q.
    JOURNAL OF CROHNS & COLITIS, 2025, 19 : i231 - i231
  • [4] Enhanced Parkinson's Disease Diagnosis via MRI Analysis: Integrating Deep Features From DenseNet201 With Neural Network Techniques
    Kumari, Jyoti
    Behera, Santi Kumari
    Sethy, Prabira Kumar
    Nanthaamornphong, Aziz
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2024, 2024 (01)
  • [5] Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis
    Wang, Li-xue
    Wang, Yi-zhe
    Han, Chen-guang
    Zhao, Lei
    He, Li
    Li, Jie
    ARQUIVOS DE NEURO-PSIQUIATRIA, 2024, 82 (08) : 1 - 10
  • [6] INNOVATIVE APPROACHES FOR EARLY ALZHEIMER'S DISEASE DETECTION THROUGH NOVEL ANALYSIS OF BRAIN MRI IMAGES
    Gangula, Rekha
    Manjula, A.
    Bhukya, Raghuram
    Saturi, Rajesh
    Gayatri, Nandam
    Rajesh, Ravula
    INTERNATIONAL JOURNAL OF MARITIME ENGINEERING, 2024, 1 (01): : 761 - 772
  • [7] Network Analysis Integrating microRNA Expression Profiling with MRI Biomarkers and Clinical Data for Prostate Cancer Early Detection: A Proof of Concept Study
    Panebianco, Valeria
    Paci, Paola
    Pecoraro, Martina
    Conte, Federica
    Carnicelli, Giorgia
    Besharat, Zein
    Catanzaro, Giuseppina
    Splendiani, Elena
    Sciarra, Alessandro
    Farina, Lorenzo
    Catalano, Carlo
    Ferretti, Elisabetta
    BIOMEDICINES, 2021, 9 (10)
  • [8] Network analysis integrating microRNA expression profiling with MRI biomarkers and clinical data for prostate cancer early detection: A proof-of-concept study
    Pecoraro, M.
    Paci, P.
    Conte, F.
    Besharat, Z. M.
    Catanzaro, G.
    Splendiani, E.
    Sciarra, A.
    Farina, L.
    Ferretti, E.
    Panebianco, V
    EUROPEAN UROLOGY, 2022, 81 : S744 - S744
  • [9] Multi-Method Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer's Disease Based on Deep Learning and Hybrid Methods
    Mohammed, Badiea Abdulkarem
    Senan, Ebrahim Mohammed
    Rassem, Taha H.
    Makbol, Nasrin M.
    Alanazi, Adwan Alownie
    Al-Mekhlafi, Zeyad Ghaleb
    Almurayziq, Tariq S.
    Ghaleb, Fuad A.
    ELECTRONICS, 2021, 10 (22)
  • [10] Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF)
    Millon, L.
    Herbrecht, R.
    Grenouillet, F.
    Morio, F.
    Alanio, A.
    Letscher-Bru, V.
    Cassaing, S.
    Chouaki, T.
    Kauffmann-Lacroix, C.
    Poirier, P.
    Toubas, D.
    Augereau, O.
    Rocchi, S.
    Garcia-Hermoso, D.
    Bretagne, S.
    CLINICAL MICROBIOLOGY AND INFECTION, 2016, 22 (09) : 810.e1 - 810.e8