Advancements in Q-learning meta-heuristic optimization algorithms: A survey

被引:0
|
作者
Yang, Yang [1 ,2 ]
Gao, Yuchao [1 ,2 ]
Ding, Zhe [3 ]
Wu, Jinran [4 ]
Zhang, Shaotong [5 ]
Han, Feifei [4 ]
Qiu, Xuelan [4 ]
Gao, Shangce [6 ]
Wang, You-Gan [7 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing, Peoples R China
[3] Queensland Univ Technol, Sch Comp Sci, Brisbane, Qld, Australia
[4] Australian Catholic Univ, Fac Educ & Arts, Banyo, Qld, Australia
[5] Ocean Univ China, Coll Marine Geosci, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Key Lab Submarine Geosci & Prospecting Tech,MOE, Qingdao, Peoples R China
[6] Univ Toyama, Fac Engn, Toyama, Japan
[7] Univ Queensland, Sch Math & Phys, St Lucia, Qld, Australia
关键词
meta-heuristic; optimization; Q-learning; reinforcement learning; PARTICLE SWARM OPTIMIZATION; AUTOMATIC-GENERATION CONTROL; DIFFERENTIAL EVOLUTION; REINFORCEMENT; GRASP;
D O I
10.1002/widm.1548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reviews the integration of Q-learning with meta-heuristic algorithms (QLMA) over the last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects of QLMA, including parameter adaptation, operator selection, and balancing global exploration with local exploitation. QLMA has become a leading solution in industries like energy, power systems, and engineering, addressing a range of mathematical challenges. Looking forward, we suggest further exploration of meta-heuristic integration, transfer learning strategies, and techniques to reduce state space. This article is categorized under: Technologies > Computational Intelligence Technologies > Artificial Intelligence
引用
收藏
页数:37
相关论文
共 50 条
  • [1] A survey of meta-heuristic algorithms in optimization of space scale expansion
    Zhang, Jinlu
    Wei, Lixin
    Guo, Zeyin
    Sun, Hao
    Hu, Ziyu
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2024, 84
  • [2] Optimization of drones communication by using meta-heuristic optimization algorithms
    Shah, A. F. M. Shahen
    Karabulut, Muhammet Ali
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (01): : 108 - 117
  • [3] Inspirations from nature for meta-heuristic algorithms: A survey
    Sachan, Rohit K.
    Kushwaha, Dharmender S.
    [J]. Recent Advances in Computer Science and Communications, 2021, 14 (06): : 1706 - 1718
  • [4] Cooperative meta-heuristic algorithms for global optimization problems
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Neggaz, Nabil
    Ibrahim, Rehab Ali
    Al-qaness, Mohammed A. A.
    Lu, Songfeng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176
  • [5] Nature Inspired Meta-heuristic Optimization Algorithms Capitalized
    Sureka, V
    Sudha, L.
    Kavya, G.
    Arena, K. B.
    [J]. 2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 1029 - 1034
  • [6] A Recent Publications Survey on Reinforcement Learning for Selecting Parameters of Meta-Heuristic and Machine Learning Algorithms
    Chernigovskaya, Maria
    Kharitonov, Andrey
    Turowski, Klaus
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, CLOSER 2023, 2023, : 236 - 243
  • [7] Meta-Heuristic Algorithms for Learning Path Recommender at MOOC
    Son, Ngo Tung
    Jaafar, Jafreezal
    Aziz, Izzatdin Abdul
    Anh, Bui Ngoc
    [J]. IEEE ACCESS, 2021, 9 : 59093 - 59107
  • [8] Meta-Heuristic Algorithms in Car Engine Design: A Literature Survey
    Tayarani-N., Mohammad-H.
    Yao, Xin
    Xu, Hongming
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (05) : 609 - 629
  • [9] Design and optimization of asymmetrical TFET using meta-heuristic algorithms
    Sagarika Choudhury
    Krishna Lal Baishnab
    Brinda Bhowmick
    Koushik Guha
    Jacopo Iannacci
    [J]. Microsystem Technologies, 2021, 27 : 3457 - 3464
  • [10] COMPARISON OF META-HEURISTIC ALGORITHMS FOR SOLVING MACHINING OPTIMIZATION PROBLEMS
    Madic, Milos
    Markovic, Danijel
    Radovanovic, Miroslav
    [J]. FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2013, 11 (01) : 29 - 44