HR-TYPE INTERPOLATIVE AND P-CONTRACTIONS VIA MAIA TYPE RESULT IN B-METRIC SPACES WITH APPLICATIONS

被引:0
|
作者
Ghosh, Sudipta Kumar [1 ]
Nahak, C. [2 ]
Agarwal, Ravi P. [3 ,4 ]
机构
[1] Kalinga Inst Ind Technol KIIT, Sch Appl Sci, Dept Math, Bhubaneswar 751024, Odisha, India
[2] IIT Kharagpur, Dept Math, Kharagpur, India
[3] Texas A&M Univ Kingsville, Dept Math, 700 Univ Blvd, MSC 172, Kingsville, TX USA
[4] Florida Inst Technol, Dept Math & Syst Engn, Melbourne, FL 32901 USA
来源
FIXED POINT THEORY | 2024年 / 25卷 / 02期
关键词
Multivalued mapping; admissible mapping; interpolative contraction; P-contraction; b- metric spaces; Maia-type result; ( H.F)-contraction; C- class function; generalized data dependence; generalized stability problem; FIXED-POINT THEOREMS; MULTIVALUED MAPPINGS; COMMON; EXISTENCE;
D O I
10.24193/fpt-ro.2024.2.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this work is to study multivalued HR-type interpolative contraction and multivalued P-contraction through ( H, .F)-contraction and C- class function, respectively via Maia type result in b- metric spaces setting. Moreover, by using the notion of multi-valued triangular alpha- admissible mappings of type Lambda, we have investigated our new findings. Some related fixed point results for such mappings are also proved in this set-up. Our results extend, generalize and modify many famous results that exist in the literature. We furnish an example to justify our new findings. As an application, we implement our results in data dependence and stability of fixed point.
引用
收藏
页码:545 / 568
页数:24
相关论文
共 50 条
  • [1] Rational interpolative contractions with applications in extended b-metric spaces
    Sarwar, Muhammad
    Fawad, Muhammad
    Rashid, Muhammad
    Mitrovic, Zoran D.
    Zhang, Qian-Qian
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2024, 9 (06): : 14043 - 14061
  • [2] Interpolative Ciric-Reich-Rus Type Contractions in b-Metric Spaces
    Pitchaimani, M.
    Ramanujan, K. Saravanan
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 685 - 692
  • [3] Solving Integral Equations via Hybrid Interpolative RI-Type Contractions in b-Metric Spaces
    Aloqaily, Ahmad
    Sagheer, Dur-e-Shehwar
    Urooj, Isma
    Batul, Samina
    Mlaiki, Nabil
    SYMMETRY-BASEL, 2023, 15 (02):
  • [4] INTERPOLATIVE HARDY-ROGERS AND REICH-RUS-CIRIC TYPE CONTRACTIONS IN b-METRIC SPACES AND RECTANGULAR b-METRIC SPACES
    Debnath, Pradip
    Mitrovic, Zoran D.
    Radenovic, Stojan
    MATEMATICKI VESNIK, 2020, 72 (04): : 368 - 374
  • [5] F-HR-type contractions on (α.η)-complete rectangular b-metric spaces
    Hussain, Nawab
    Parvaneh, Vahid
    Alamri, Badria A. S.
    Kadelburg, Zoran
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 1030 - 1043
  • [6] On Istrescu Type Contractions in b-Metric Spaces
    Karapinar, Erdal
    Fulga, Andreea
    Petrusel, Adrian
    MATHEMATICS, 2020, 8 (03)
  • [7] Rational-type contractions and their applications in extended b-metric spaces
    Mlaiki, Nabil
    Shah, Syed Khayyam
    Sarwar, Muhammad
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 16
  • [8] Results on Contractions of Reich Type in Graphical b-Metric Spaces with Applications
    Younis, Mudasir
    Singh, Deepak
    Asadi, Mehdi
    Joshi, Vishal
    FILOMAT, 2019, 33 (17) : 5723 - 5735
  • [9] Proinov type contractions on dislocated b-metric spaces
    Badr Alqahtani
    Sara S. Alzaid
    Andreea Fulga
    Antonio Francisco Roldán López de Hierro
    Advances in Difference Equations, 2021
  • [10] Rational Type Contractions in Extended b-Metric Spaces
    Huang, Huaping
    Singh, Yumnam Mahendra
    Khan, Mohammad Saeed
    Radenovic, Stojan
    SYMMETRY-BASEL, 2021, 13 (04):