Advanced characterization techniques for phosphate cathodes in aqueous rechargeable zinc-based batteries

被引:0
|
作者
Zhou, Li-Feng [1 ,2 ]
Li, Jia-Yang [3 ]
Peng, Jian [3 ,4 ]
Liu, Li-Ying [1 ,2 ]
Zhang, Hang [3 ,5 ]
Wang, Yi-Song [1 ,2 ]
Fan, Yameng [3 ]
Wang, Jia-Zhao [3 ,5 ]
Du, Tao [1 ,2 ]
机构
[1] Northeastern Univ, State Environm Protect Key Lab Ecoind, Shenyang 110819, Peoples R China
[2] Minist Educ, Engn Res Ctr Frontier Technol Low carbon Steelmaki, Shenyang, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat ISEM, Wollongong, NSW 2522, Australia
[4] Western Univ, Dept Mech & Mat Engn, London, ON, Canada
[5] Wenzhou Univ Technol, Innovat Inst Carbon Neutralizat, Wenzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
advanced characterization techniques; aqueous zinc-ion battery; cathodes; mechanism; phosphates; ION BATTERIES; LI-ION; ELECTROCHEMICAL PERFORMANCE; SODIUM; LITHIUM; DESIGN; NA3V2(PO4)(3); CHALLENGES; PROGRESS; ANODE;
D O I
10.1002/cey2.611
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-based batteries are emerging as highly promising alternatives to commercially successful lithium-ion batteries, particularly for large-scale energy storage in power stations. Phosphate cathodes have garnered significant research interest owing to their adjustable operation potential, electrochemical stability, high theoretical capacity, and environmental robustness. However, their application is impeded by various challenges, and research progress is hindered by unclear mechanisms. In this review, the various categories of phosphate materials as zinc-based battery cathodes are first summarized according to their structure and their corresponding electrochemical performance. Then, the current advances to reveal the Zn2+ storage mechanisms in phosphate cathodes by using advanced characterization techniques are discussed. Finally, some critical perspectives on the characterization techniques used in zinc-based batteries and the application potential of phosphates are provided. This review aims to guide researchers toward advanced characterization technologies that can address key challenges, thereby accelerating the practical application of phosphate cathodes in zinc-based batteries for large-scale energy storage. Various categories of phosphate materials as cathodes in aqueous zinc-based batteries are summarized according to their structure and corresponding electrochemical performance, and advanced characterization techniques are discussed to reveal the Zn2+ storage mechanisms. Moreover, some critical perspectives on the used characterization techniques and the application potential of phosphates are provided. image
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Advanced characterization techniques for phosphate cathodes in aqueous rechargeable zinc-based batteries
    LiFeng Zhou
    JiaYang Li
    Jian Peng
    LiYing Liu
    Hang Zhang
    YiSong Wang
    Yameng Fan
    JiaZhao Wang
    Tao Du
    Carbon Energy, 2024, 6 (10) : 7 - 33
  • [2] Zinc Powder Anodes for Rechargeable Aqueous Zinc-Based Batteries
    Li, Qing
    Li, Nan
    Zhi, Chunyi
    NANO LETTERS, 2024, 24 (14) : 4055 - 4063
  • [3] Progress of Phosphate-based Polyanion Cathodes for Aqueous Rechargeable Zinc Batteries
    Bin, Duan
    Du, Yanyan
    Yang, Beibei
    Lu, Hongbin
    Liu, Yao
    Xia, Yongyao
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [4] Recent advances in flexible aqueous zinc-based rechargeable batteries
    Li, Xuejin
    Tang, Yongchao
    Lv, Haiming
    Wang, Wenlong
    Mo, Funian
    Liang, Guojin
    Zhi, Chunyi
    Li, Hongfei
    NANOSCALE, 2019, 11 (39) : 17992 - 18008
  • [5] Engineering techniques to dendrite free Zinc-based rechargeable batteries
    Worku, Ababay Ketema
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [6] Advanced rechargeable zinc-based batteries: Recent progress and future perspectives
    Li, Hongfei
    Ma, Longtao
    Han, Cuiping
    Wang, Zifeng
    Liu, Zhuoxin
    Tang, Zijie
    Zhi, Chunyi
    NANO ENERGY, 2019, 62 : 550 - 587
  • [7] Recent Advances in Flexible Zinc-Based Rechargeable Batteries
    Li, Yingbo
    Fu, Jing
    Zhong, Cheng
    Wu, Tianpin
    Chen, Zhongwei
    Hu, Wenbin
    Amine, Khalil
    Lu, Jun
    ADVANCED ENERGY MATERIALS, 2019, 9 (01)
  • [8] Micronanostructured Design of Dendrite-Free Zinc Anodes and Their Applications in Aqueous Zinc-Based Rechargeable Batteries
    Cui, Bing-Feng
    Han, Xiao-Peng
    Hu, Wen-Bin
    SMALL STRUCTURES, 2021, 2 (06):
  • [9] Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zinc-Based Batteries
    Zhang, Quanchao
    Liu, Xiaorui
    Zhu, Xiangbo
    Wan, Yizao
    Zhong, Cheng
    SMALL METHODS, 2023, 7 (02)
  • [10] The phosphate cathodes for aqueous zinc-ion batteries
    Li, Xi
    Chen, Zhenjie
    Yang, Yongqiang
    Liang, Shuquan
    Lu, Bingan
    Zhou, Jiang
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (16) : 3986 - 3998