Geometric Linearization for Constraint Hamiltonian Systems

被引:1
|
作者
Paliathanasis, Andronikos [1 ,2 ,3 ]
机构
[1] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
[2] Stellenbosch Univ, Sch Data Sci & Computat Thinking, 44 Banghoek Rd, ZA-7600 Stellenbosch, South Africa
[3] Univ Catolica Norte, Dept Matemat, Avda Angamos 0610, Antofagasta 1280, Chile
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 08期
关键词
constraint Hamiltonian systems; linearization; exact solutions; Noether symmetries; ORDINARY DIFFERENTIAL-EQUATIONS; EISENHART LIFT; CONSERVATION LAW; SYMMETRIES; FIELD; GRAVITATION; POINT;
D O I
10.3390/sym16080988
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigates the geometric linearization of constraint Hamiltonian systems using the Jacobi metric and the Eisenhart lift. We establish a connection between linearization and maximally symmetric spacetimes, focusing on the Noether symmetries admitted by the constraint Hamiltonian systems. Specifically, for systems derived from the singular Lagrangian LN,qk,q(center dot)k=12Ngijq(center dot)iq(center dot)j-NV(qk), where N and qi are dependent variables and dimgij=n, the existence of nn+12 Noether symmetries is shown to be equivalent to the linearization of the equations of motion. The application of these results is demonstrated through various examples of special interest. This approach opens new directions in the study of differential equation linearization.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Geometric Linearization for Constraint Hamiltonian Systems
    Paliathanasis, Andronikos
    arXiv,
  • [2] Linearization of Hamiltonian and Gradient Systems
    van der Schaft, A. J.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (02) : 185 - 198
  • [3] On the linearization of Hamiltonian systems on Poisson manifolds
    Vorob'ev, YM
    MATHEMATICAL NOTES, 2005, 78 (3-4) : 297 - 303
  • [4] On the Linearization of Hamiltonian Systems on Poisson Manifolds
    Yu. M. Vorob'ev
    Mathematical Notes, 2005, 78 : 297 - 303
  • [5] Geometric reduction of Hamiltonian systems
    Marciniak, K
    Blaszak, M
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 55 (03) : 325 - 339
  • [6] Infinitesimal Poisson algebras and linearization of Hamiltonian systems
    J. C. Ruíz-Pantaleón
    D. García-Beltrán
    Yu. Vorobiev
    Annals of Global Analysis and Geometry, 2020, 58 : 415 - 431
  • [7] COMPLEX PLANAR HAMILTONIAN SYSTEMS: LINEARIZATION AND DYNAMICS
    Shi, Hua
    Zhang, Xiang
    Zhang, Yuyan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (07) : 3295 - 3317
  • [8] Linearization of Hamiltonian systems through state immersion
    Menini, Laura
    Tornambe, Antonio
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1261 - 1266
  • [9] SYMPLECTIC CONNECTIONS AND THE LINEARIZATION OF HAMILTONIAN-SYSTEMS
    MARSDEN, JE
    RATIU, T
    RAUGEL, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 : 329 - 380
  • [10] Infinitesimal Poisson algebras and linearization of Hamiltonian systems
    Ruiz-Pantaleon, J. C.
    Garcia-Beltran, D.
    Vorobiev, Yu.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 58 (04) : 415 - 431