Data integration of multiple genome-wide association studies under group homogeneous structure

被引:0
|
作者
Li, Kai [1 ]
Song, Chi [2 ]
Jiang, Yuan [3 ]
机构
[1] Karyopharm Therapeut Inc, Newton, MA 02459 USA
[2] Ohio State Univ, Coll Publ Hlth, Div Biostat, Columbus, OH 43210 USA
[3] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
基金
美国国家卫生研究院;
关键词
Group regularization; Heterogeneity; Homogeneity; Incompatible studies; Meta-analysis; VARIABLE SELECTION; SCHIZOPHRENIA; METAANALYSIS; LASSO; LINKAGE; CANCER;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nowadays, it's common to have a large collection of datasets from similar scientific studies, with the famous example of multiple genome-wide association studies that are investigating the same human disease. To take advantage of these datasets, statisticians have developed data integration methods to combine datasets from multiple studies in order to increase statistical power. Most data integration methods to date can only combine compatible studies with the same explanatory variables; they also tend to ignore the grouping structure of the explanatory variables. However, incompatible studies with grouped explanatory variables arise frequently from multiple genome-wide association studies that employ different genotyping platforms. Therefore, we propose a new method called "gMeta" that can integrate incompatible datasets under a new group homogeneous structure by utilizing group regularization principles. gMeta not only promotes statistical powers by assuming homogeneity among group-level signals but also allows heterogeneous individual-level signals from different studies. Simulation studies illustrate the advantage of gMeta over separate analysis in terms of its homogeneity and enhanced statistical power for detecting weak signals. Finally, an integrative analysis of multiple genetic datasets on schizophrenia shows the applicability and efficacy of gMeta when it is applied to genome-wide association studies.
引用
收藏
页码:517 / 532
页数:16
相关论文
共 50 条
  • [1] Genome-wide association studies of multiple sclerosis
    Cotsapas, Chris
    Mitrovic, Mitja
    [J]. CLINICAL & TRANSLATIONAL IMMUNOLOGY, 2018, 7 (06)
  • [2] Genome-Wide Association Studies of Multiple Keratinocyte Cancers
    Pardo, Luba M.
    Li, Wen-Qing
    Hwang, Shih-Jen
    Verkouteren, Joris A. C.
    Hofman, Albert
    Uitterlinden, Andre G.
    Kraft, Peter
    Turman, Constance
    Han, Jiali
    Cho, Eunyoung
    Murabito, Joanne M.
    Levy, Daniel
    Qureshi, Abrar A.
    Nijsten, Tamar
    [J]. PLOS ONE, 2017, 12 (01):
  • [3] An Overview of Genome-Wide Association Studies in Multiple Sclerosis
    Algothmi, Khloud Mubarak
    [J]. JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2020, 32 (46) : 49 - 65
  • [4] Genome-Wide Multiple Sclerosis Association Data and Coagulation
    La Starza, Sara
    Ferraldeschi, Michela
    Buscarinu, Maria Chiara
    Romano, Silvia
    Fornasiero, Arianna
    Mechelli, Rosella
    Umeton, Renato
    Ristori, Giovanni
    Salvetti, Marco
    [J]. FRONTIERS IN NEUROLOGY, 2019, 10
  • [5] The Genome-wide Association Studies Data Sharing Policy
    Shurin, Susan B.
    [J]. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2008, 1 (02): : 91 - 91
  • [6] Longitudinal Data Analysis in Genome-Wide Association Studies
    Beyene, Joseph
    Hamid, Jemila S.
    [J]. GENETIC EPIDEMIOLOGY, 2014, 38 : S68 - S73
  • [7] Genome-wide association studies
    [J]. Nature Reviews Methods Primers, 1
  • [8] Genome-wide association studies
    Uffelmann, Emil
    Huang, Qin Qin
    Munung, Nchangwi Syntia
    de Vries, Jantina
    Okada, Yukinori
    Martin, Alicia R.
    Martin, Hilary C.
    Lappalainen, Tuuli
    Posthuma, Danielle
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [9] Genome-Wide Association Studies
    Guo, Xiuqing
    Rotter, Jerome I.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (17): : 1705 - 1706
  • [10] Weighted multiple testing procedures in genome-wide association studies
    Obry, Ludivine
    Dalmasso, Cyril
    [J]. PEERJ, 2023, 11