Instability of Type (II) Lawson-Osserman cones

被引:0
|
作者
Nie, Zhaohu [1 ]
Zhang, Yongsheng [2 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100048, Peoples R China
关键词
49Q05; 58E20; 53A10; 53C42; MINIMAL IMMERSIONS;
D O I
10.1007/s00526-024-02834-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove instability of Type (II) Lawson-Osserman cones in Euclidean spaces, and thus provide a family of (uncountably many) non-smooth unstable minimal graphs of high codimension versus smooth unstable ones by Lawson-Osserman using a min-max technique. To our knowledge, these are the first examples of non-smooth unstable minimal graphs .
引用
收藏
页数:16
相关论文
共 50 条
  • [1] New area-minimizing Lawson-Osserman cones
    Xu, Xiaowei
    Yang, Ling
    Zhang, Yongsheng
    ADVANCES IN MATHEMATICS, 2018, 330 : 739 - 762
  • [2] Convex functions on Grassmannian manifolds and Lawson-Osserman problem
    Xin, Y. L.
    Yang, Ling
    ADVANCES IN MATHEMATICS, 2008, 219 (04) : 1298 - 1326
  • [3] SUBMANIFOLDS WITH CONSTANT JORDAN ANGLES AND RIGIDITY OF THE LAWSON-OSSERMAN CONE
    Jost, Juergen
    Xin, Yuanlong
    Yang, Ling
    ASIAN JOURNAL OF MATHEMATICS, 2018, 22 (01) : 75 - 110
  • [4] Self-expanders to the mean curvature flow based on the generalized Lawson-Osserman cone
    Lee, Chen-Kuan
    GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [5] STABILITY INEQUALITIES FOR LAWSON CONES
    Liu, Zhenhua
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (06) : 1001 - 1012
  • [6] On calibrations for Lawson's cones.
    Davini, A
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2004, 111 : 55 - 70
  • [7] A PROOF BY FOLIATION THAT LAWSON'S CONES ARE AΦ-MINIMIZING
    Mooney, Connor
    Yang, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5291 - 5302
  • [8] Self-expanders to the mean curvature flow based on the generalized Lawson–Osserman cone
    Chen-Kuan Lee
    Geometriae Dedicata, 2023, 217
  • [9] NONLOCAL s-MINIMAL SURFACES AND LAWSON CONES
    Davila, Juan
    del Pino, Manuel
    Wei, Juncheng
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 109 (01) : 111 - 175
  • [10] From hyperheavenly spaces to Walker and Osserman spaces: II
    Chudecki, Adam
    Przanowski, Maciej
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (23)