Evaluation of risk prediction models to select lung cancer screening participants in Europe: a prospective cohort consortium analysis

被引:0
|
作者
Feng, Xiaoshuang [1 ]
Goodley, Patrick [3 ,4 ]
Alcala, Karine [1 ,10 ,11 ]
Guida, Florence [2 ]
Kaaks, Rudolf [5 ,6 ,7 ]
Vermeulen, Roel [8 ,9 ]
Downward, George S. [8 ,9 ]
Bonet, Catalina
Colorado-Yohar, Sandra M. [12 ,13 ,14 ]
Albanes, Demetrius [15 ]
Weinstein, Stephanie J. [14 ]
Goldberg, Marcel [16 ,17 ]
Zins, Marie [16 ,17 ]
Relton, Caroline [18 ,19 ]
Langhammer, Arnulf [20 ]
Skogholt, Anne Heidi [21 ]
Johansson, Mattias [1 ]
Robbins, Hilary A. [1 ]
机构
[1] Int Agcy Res Canc, Genom Epidemiol Branch, F-69366 Lyon 07, France
[2] Int Agcy Res Canc, Environm & Lifestyle Epidemiol Branch, Lyon, France
[3] Univ Manchester, Div Immunol Immun Infect & Resp Med, Manchester, England
[4] Manchester Univ NHS Fdn Trust, Manchester Thorac Oncol Ctr, Manchester, England
[5] German Canc Res Ctr, Dept Canc Epidemiol, Heidelberg, Germany
[6] Translat Lung Res Ctr Heidelberg, Heidelberg, Germany
[7] German Ctr Lung Res DZL, Heidelberg, Germany
[8] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[9] Univ Utrecht, Inst Risk Assessment Sci, Dept Populat Hlth Sci, Utrecht, Netherlands
[10] Bellvitge Biomed Res Inst, Epidemiol Publ Hlth Canc Prevent & Palliat Care Pr, Nutr & Canc Grp, LHospitalet Llobregat, Barcelona, Spain
[11] Catalan Inst Oncol, Unit Nutr & Canc, LHospitalet Llobregat, Barecelona, Spain
[12] IMIB Arrixaca, Murcia Reg Hlth Council, Dept Epidemiol, Murcia, Spain
[13] CIBER Epidemiol & Salud Publ, Madrid, Spain
[14] Univ Antioquia, Natl Fac Publ Hlth, Res Grp Demog & Hlth, Medellin, Colombia
[15] NCI, Metab Epidemiol Branch, Div Canc Epidemiol & Genet, Rockville, MD USA
[16] INSERM UMS 11, Populat based Epidemiol Cohorts Unit, Villejuif, France
[17] Paris Cite Univ, Paris, France
[18] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, England
[19] Univ Bristol, Sch Populat Hlth Sci, Bristol Med Sch, Bristol, England
[20] Norwegian Univ Sci & Technol, HUNT Res Ctr, Dept Publ Hlth & Nursing, Levanger, Norway
[21] Norwegian Univ Sci & Technol, KG Jebsen Ctr Genet Epidemiol, Dept Publ Hlth & Nursing, Trondheim, Norway
来源
LANCET DIGITAL HEALTH | 2024年 / 6卷 / 09期
关键词
VALIDATION; CRITERIA; DESIGN;
D O I
暂无
中图分类号
R-058 [];
学科分类号
摘要
Background Lung cancer risk prediction models might efficiently identify individuals who should be offered lung cancer screening. However, their performance has not been comprehensively evaluated in Europe. We aimed to externally validate and evaluate the performance of several risk prediction models that predict lung cancer incidence or mortality in prospective European cohorts. Methods We analysed 240 137 participants aged 45-80 years with a current or former smoking history from nine European countries in four prospective cohorts from the pooled database of the Lung Cancer Cohort Consortium: the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (Finland), the Nord-Tr & oslash;ndelag Health Study (Norway), CONSTANCES (France), and the European Prospective Investigation into Cancer and Nutrition (Denmark, Germany, Italy, Spain, Sweden, the Netherlands, and Norway). We evaluated ten lung cancer risk models, which comprised the Bach, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 2012 model (PLCO m2012 ), the Lung Cancer Risk Assessment Tool (LCRAT), the Lung Cancer Death Risk Assessment Tool (LCDRAT), the Nord-Tr & oslash;ndelag Health Study (HUNT), the Optimized Early Warning Model for Lung Cancer Risk (OWL), the University College London- Death (UCLD), the University College London-Incidence (UCLI), the Liverpool Lung Project version 2 (LLP version 2), and the Liverpool Lung Project version 3 (LLP version 3) models. We quantified model calibration as the ratio of expected to observed cases or deaths and discrimination using the area under the receiver operating characteristic curve (AUC). For each model, we also identified risk thresholds that would screen the same number of individuals as each of the US Preventive Services Task Force 2021 (USPSTF-2021), the US Preventive Services Task Force 2013 (USPSTF-2013), and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) criteria. Findings Among the participants, 1734 lung cancer cases and 1072 lung cancer deaths occurred within five years of enrolment. Most models had reasonable calibration in most countries, although the LLP version 2 overpredicted risk by more than 50% in eight countries (expected to observed >= 1<middle dot>50). The PLCOm2012, m2012 , LCDRAT, LCRAT, Bach, HUNT, OWL, UCLD, and UCLI models showed similar discrimination in most countries, with AUCs ranging from 0<middle dot>68 (95% CI 0<middle dot>59-0<middle dot>77) to 0<middle dot>83 (0<middle dot>78-0<middle dot>89), whereas the LLP version 2 and LLP version 3 showed lower discrimination, with AUCs ranging from 0<middle dot>64 (95% CI 0<middle dot>57-0<middle dot>72) to 0<middle dot>78 (0<middle dot>74-0<middle dot>83). When pooling data from all countries (but excluding the HUNT cohort), 33<middle dot>9% (73 313 of 216 387) of individuals were eligible by USPSTF-2021 criteria, which included 74<middle dot>8% (1185) of lung cancers and 76<middle dot>3% (730) of lung cancer deaths occurring over 5 years. Fewer individuals were selected by USPSTF-2013 and NELSON criteria. After applying thresholds to select a population of equal size to USPSTF-2021, the PLCOm2012, m2012 , LCDRAT, LCRAT, Bach, HUNT, OWL, UCLD, and UCLI, models identified 77<middle dot>6%-79<middle dot>1% of future cases, although they selected slightly older individuals compared with USPSTF-2021 criteria. Results were similar for USPSTF-2013 and NELSON. Interpretation Several lung cancer risk prediction models showed good performance in European countries and might improve the efficiency of lung cancer screening if used in place of categorical eligibility criteria.
引用
收藏
页码:e614 / e624
页数:11
相关论文
共 50 条
  • [1] Evaluation of risk prediction models to select lung cancer screening participants in Europe: a prospective cohort consortium analysis
    Feng, Xiaoshuang
    Goodley, Patrick
    Alcala, Karine
    Guida, Florence
    Kaaks, Rudolf
    Vermeulen, Roel
    Downward, George S
    Bonet, Catalina
    Colorado-Yohar, Sandra M
    Albanes, Demetrius
    Weinstein, Stephanie J
    Goldberg, Marcel
    Zins, Marie
    Relton, Caroline
    Langhammer, Arnulf
    Skogholt, Anne Heidi
    Johansson, Mattias
    Robbins, Hilary A
    The Lancet Digital Health, 2024, 6 (09):
  • [2] Efficacy of Risk Prediction Models and Thresholds to Select Patients for Lung Cancer Screening
    Smith, Richard J.
    Vijayaharan, Thurairajah
    Linehan, Victoria
    Sun, Zhuolu
    Yong, Jean Hai Ein
    Harris, Scott
    Mariathas, Hensley H.
    Bhatia, Rick
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2022, 73 (04): : 672 - 679
  • [3] Performance of Risk Prediction Models to Select Individuals for Lung Cancer Screening in the European Population
    Feng, X.
    Goodley, P.
    Alcala, K.
    Guida, F.
    Johansson, M.
    Robbins, H. A.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S171 - S171
  • [4] Risk models to select high risk candidates for lung cancer screening
    Schabath, Matthew B.
    ANNALS OF TRANSLATIONAL MEDICINE, 2018, 6 (03)
  • [5] Evaluation Of Lung Cancer Risk Prediction Models For Selecting Smokers For CT Lung Cancer Screening
    Katki, H.
    Kovalchik, S.
    Petito, L.
    Cheung, L. C.
    Jacobs, E.
    Jemal, A.
    Berg, C.
    Chaturvedi, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [6] Are Risk Prediction Models Superior Over Standard Criteria for Lung Cancer Screening in Europe? Macroscale Simulation on Large Polish Cohort
    Ostrowski, M.
    Marjanski, T.
    Dziedzic, R.
    Kocot, S.
    Rzyman, W.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S518 - S518
  • [7] Evaluation of cardiovascular risk in a lung cancer screening cohort
    Ruparel, Mamta
    Quaife, Samantha L.
    Dickson, Jennifer L.
    Horst, Carolyn
    Burke, Stephen
    Taylor, Magali
    Ahmed, Asia
    Shaw, Penny
    Soo, May-Jan
    Nair, Arjun
    Devaraj, Anand
    O'Dowd, Emma Louise
    Bhowmik, Angshu
    Navani, Neal
    Sennett, Karen
    Duffy, Stephen W.
    Baldwin, David R.
    Sofat, Reecha
    Patel, Riyaz S.
    Hingorani, Aroon
    Janes, Sam M.
    THORAX, 2019, 74 (12) : 1140 - 1146
  • [8] Lung Cancer Risk Prediction to Select Smokers for Screening CT-Letter
    Young, Robert P.
    Hopkins, Raewyn J.
    CANCER PREVENTION RESEARCH, 2012, 5 (04) : 697 - 698
  • [9] Lung Cancer Risk Prediction to Select Smokers for Screening CT-Response
    Maisonneuve, Patrick
    Bagnardi, Vincenzo
    Bellomi, Massimo
    Veronesi, Giulia
    CANCER PREVENTION RESEARCH, 2012, 5 (04) : 699 - 699
  • [10] Lung cancer survival and comorbidities in lung cancer screening participants of the Gdansk screening cohort
    Ostrowski, Marcin
    Marczyk, Michal
    Dziedzic, Robert
    Jelitto-Gorska, Malgorzata
    Marjanski, Tomasz
    Pisiak, Sylwia
    Jedrzejczyk, Tadeusz
    Polanska, Joanna
    Zdrojewski, Tomasz
    Wojtyniak, Bogdan
    Rzyman, Witold
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2019, 29 (06): : 1114 - 1117