Customized Energy Management for Fuel Cell Electric Vehicle Based on Deep Reinforcement Learning-Model Predictive Control Self-Regulation Framework

被引:0
|
作者
Quan, Shengwei [1 ]
He, Hongwen [1 ]
Wei, Zhongbao [1 ]
Chen, Jinzhou [1 ]
Zhang, Zhendong [1 ]
Wang, Ya-Xiong [2 ]
机构
[1] Beijing Inst Technol, Natl Key Lab Adv Vehicle Integrat & Control, Beijing 100081, Peoples R China
[2] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
关键词
Fuel cells; Optimization; Batteries; Energy management; Degradation; Costs; State of charge; Customized energy management; fuel cell and battery degradation; fuel cell electric vehicle; model predictive control; reinforcement learning;
D O I
10.1109/TII.2024.3435359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep reinforcement learning (DRL) has been widely used in the field of automotive energy management. However, DRL is computationally inefficient and less robust, making it difficult to be applied to practical systems. In this article, a customized energy management strategy based on the deep reinforcement learning-model predictive control (DRL-MPC) self-regulation framework is proposed for fuel cell electric vehicles. The soft actor critic (SAC) algorithm is used to train the energy management strategy offline, which minimizes system comprehensive consumption and lifetime degradation. The trained SAC policy outputs the sequence of fuel cell actions at different states in the prediction horizon as the initial value of the nonlinear MPC solution. Under the MPC framework, iterative computation is carried out for nonlinear optimization problems to optimize action sequences based on SAC policy. In addition, the vehicle's usual operation dataset is collected to customize the update package for further improvement of the energy management effect. The DRL-MPC can optimize the SAC policy action at the state boundary to reduce system lifetime degradation. The proposed strategy also shows better optimization robustness than SAC strategy under different vehicle loads. Moreover, after the update package application, the total cost is reduced by 5.93% compared with SAC strategy, which has better optimization under comprehensive condition with different vehicle loads.
引用
收藏
页码:13776 / 13785
页数:10
相关论文
共 50 条
  • [1] Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework
    Huang, Xuejin
    Zhang, Jingyi
    Ou, Kai
    Huang, Yin
    Kang, Zehao
    Mao, Xuping
    Zhou, Yujie
    Xuan, Dongji
    ENERGY, 2024, 304
  • [2] Energy management optimization of fuel cell hybrid electric vehicle based on deep reinforcement learning
    Wang, Hao-Cong
    Wang, Yue-Yang
    Fu, Zhu-Mu
    Chen, Qi-Hong
    Tao, Fa-Zhan
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (10): : 1831 - 1841
  • [3] Energy management of hybrid electric vehicles based on model predictive control and deep reinforcement learning
    Zhang, Chunmei
    Cul, Wei
    Du, Yi
    Li, Tao
    Cui, Naxin
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5441 - 5446
  • [4] Energy management for a hybrid electric vehicle based on prioritized deep reinforcement learning framework
    Du, Guodong
    Zou, Yuan
    Zhang, Xudong
    Guo, Lingxiong
    Guo, Ningyuan
    ENERGY, 2022, 241
  • [5] Deep reinforcement learning based energy management strategy for range extend fuel cell hybrid electric vehicle
    Huang, Yin
    Hu, Haoqin
    Tan, Jiaqi
    Lu, Chenlei
    Xuan, Dongji
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [6] Deep reinforcement learning based energy management strategy for fuel cell/battery/supercapacitor powered electric vehicle
    Wang, Jie
    Zhou, Jianhao
    Zhao, Wanzhong
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2022, 1 (02):
  • [7] Energy management control strategy for plug-in fuel cell electric vehicle based on reinforcement learning algorithm
    Lin X.-Y.
    Xia Y.-T.
    Wei S.-S.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (10): : 1332 - 1341
  • [8] Deep reinforcement learning based energy management for a hybrid electric vehicle
    Du, Guodong
    Zou, Yuan
    Zhang, Xudong
    Liu, Teng
    Wu, Jinlong
    He, Dingbo
    ENERGY, 2020, 201 (201)
  • [9] Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning
    Tang, Xiaolin
    Zhou, Haitao
    Wang, Feng
    Wang, Weida
    Lin, Xianke
    ENERGY, 2022, 238
  • [10] Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle
    Ren, Xiaoxia
    Ye, Jinze
    Xie, Liping
    Lin, Xinyou
    ENERGY, 2024, 286