Mond-Weir Duality Results for Nondifferentiable Mathematical Programming with Vanishing Constraints

被引:0
|
作者
Bafrani, A. Hassani [1 ,2 ]
机构
[1] Payame Noor Univ, Tehran, Iran
[2] Payame Noor Univ PNU, Dept Math, Math, Tehran 193954697, Iran
关键词
Dual problem; vanishing constraints; clarke subdifferential; duality results; OPTIMALITY CONDITIONS; STATIONARY CONDITIONS; OPTIMIZATION PROBLEMS; QUALIFICATIONS;
D O I
10.30495/JME.2024.2950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a Mond-Weir type dual problem for the optimization problems with vanishing constraints (MPVC) defined by nondifferentiable locally Lipschitz functions. Then, we present the weak, the strong, the converse, the restricted converse, and the strict converse duality results for this new dual problem. This article can be considered as an extension of Mishra et al. (Ann. Oper. Res. 243(1):249-272, 2016), and a supplement of Gobadzadeh et al. (J. Math. Ext 9(7):1-17, 2022).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Note on Mond-Weir type nondifferentiable second order symmetric duality
    Husain, Z.
    Ahmad, I.
    OPTIMIZATION LETTERS, 2008, 2 (04) : 599 - 604
  • [2] Optimality conditions and Mond-Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints
    Antczak, Tadeusz
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2022, 20 (03): : 417 - 442
  • [3] Parametric and Mond-Weir Duality for Fractional Interval-valued Optimization Problem with Vanishing Constraints
    Kummari, Krishna
    Rani, B. Japamala
    IMPENDING INQUISITIONS IN HUMANITIES AND SCIENCES, ICIIHS-2022, 2024, : 521 - 535
  • [4] Mond-Weir Duality for Multiobjective Optimization Problems With Cone Constraints
    Li, Lun
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (02) : 321 - 332
  • [5] Wolfe duality and Mond-Weir duality via perturbations
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 374 - 384
  • [6] Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones
    Gulati, T. R.
    Mehndiratta, Geeta
    OPTIMIZATION LETTERS, 2010, 4 (02) : 293 - 309
  • [7] Mond-Weir duality in vector programming with generalized invex functions on differentiable manifolds
    Ferrara, Massimiliano
    Mititelu, Stefan
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2006, 11 (02): : 80 - 87
  • [8] MOND-WEIR TYPE MIXED SYMMETRIC FIRST AND SECOND ORDER DUALITY IN NON-DIFFERENTIABLE MATHEMATICAL PROGRAMMING
    Mishra, S. K.
    Wang, S. Y.
    Lai, K. K.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (02) : 189 - 198
  • [9] Higher-order Mond-Weir converse duality in multiobjective programming involving cones
    Yang XinMin
    Yang Jin
    Yip, Tsz Leung
    Teo, Kok Lay
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) : 2389 - 2392
  • [10] Mond-Weir duality under ρ-(η, θ)-invexity in Banach space
    Nanda, S.
    Behera, N.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (04): : 735 - 746