Hybrid deep learning based prediction for water quality of plain watershed

被引:0
|
作者
Wang, Kefan [1 ]
Liu, Lei [1 ]
Ben, Xuechen [3 ]
Jin, Danjun [3 ]
Zhu, Yao [4 ]
Wang, Feier [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
[2] Zhejiang Ecol Civilizat Acad, Anji 313300, Zhejiang, Peoples R China
[3] Zhejiang Zone King Environm Sci &Tech Co Ltd, Hangzhou 310064, Peoples R China
[4] Taizhou Ecol & Environm Bur Wenling Branch, Wenling 317599, Zhejiang, Peoples R China
关键词
Water quality prediction; Machine learning; Hybrid model; Long Short-term memory; Gated recurrent unit; Bayesian optimization; MODEL; RIVER; IMPACTS; QUANTITY; NETWORKS;
D O I
10.1016/j.envres.2024.119911
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Establishing a highly reliable and accurate water quality prediction model is critical for effective water environment management. However, enhancing the performance of these predictive models continues to pose challenges, especially in the plain watershed with complex hydraulic conditions. This study aims to evaluate the efficacy of three traditional machine learning models versus three deep learning models in predicting the water quality of plain river networks and to develop a novel hybrid deep learning model to further improve prediction accuracy. The performance of the proposed model was assessed under various input feature sets and data temporal frequencies. The findings indicated that deep learning models outperformed traditional machine learning models in handling complex time series data. Long Short-Term Memory (LSTM) models improved the R-2 by approximately 29% and lowered the Root Mean Square Error (RMSE) by about 48.6% on average. The hybrid Bayes-LSTM-GRU (Gated Recurrent Unit) model significantly enhanced prediction accuracy, reducing the average RMSE by 18.1% compared to the single LSTM model. Models trained on feature-selected datasets exhibited superior performance compared to those trained on original datasets. Higher temporal frequencies of input data generally provide more useful information. However, in datasets with numerous abrupt changes, increasing the temporal interval proves beneficial. Overall, the proposed hybrid deep learning model demonstrates an efficient and cost-effective method for improving water quality prediction performance, showing significant potential for application in managing water quality in plain watershed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Water Quality Prediction Based on Hybrid Deep Learning Algorithm
    Perumal, Bhagavathi
    Rajarethinam, Niveditha
    Velusamy, Anusuya Devi
    Sundramurthy, Venkatesa Prabhu
    ADVANCES IN CIVIL ENGINEERING, 2023, 2023
  • [2] A Water Quality Prediction Model Based on Modal Decomposition and Hybrid Deep Learning Models
    Zhao, Shuo
    Liu, Ruru
    Liu, Yahui
    Zeng, Tao
    Chen, Chunpeng
    Xu, Liping
    Water (Switzerland), 2025, 17 (02)
  • [3] A hybrid approach to improvement of watershed water quality modeling by coupling process-based and deep learning models
    Jeong, Dae Seong
    Jeong, Heewon
    Kim, Jin Hwi
    Kim, Joon Ha
    Park, Yongeun
    WATER ENVIRONMENT RESEARCH, 2024, 96 (08)
  • [4] Water Quality Prediction for Smart Aquaculture Using Hybrid Deep Learning Models
    Rasheed Abdul Haq, K. P.
    Harigovindan, V. P.
    IEEE ACCESS, 2022, 10 : 60078 - 60098
  • [5] Deep learning based an effective hybrid model for water quality assessment
    Utku, Anil
    Utku, Esen Damla
    Kutlu, Banu
    WATER ENVIRONMENT RESEARCH, 2023, 95 (10)
  • [6] Long-term prediction of multiple river water quality indexes based on hybrid deep learning models
    Hu, Yankun
    Lyu, Li
    Wang, Ning
    Zhou, Xiaolei
    Fang, Meng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [7] A Novel Hybrid Model Based on Deep Learning and Autoregressive for Air Quality Prediction
    Wang, Can
    Zhu, Minghua
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [8] A hybrid deep learning approach for streamflow prediction utilizing watershed memory and process-based modeling
    Yifru, Bisrat Ayalew
    Lim, Kyoung Jae
    Bae, Joo Hyun
    Park, Woonji
    Lee, Seoro
    HYDROLOGY RESEARCH, 2024, 55 (04): : 498 - 518
  • [9] Identification of pollution source and prediction of water quality based on deep learning techniques
    Wang, Junping
    Xue, Baolin
    Wang, Yuntao
    Yinglan, A.
    Wang, Guoqiang
    Han, Dongqing
    JOURNAL OF CONTAMINANT HYDROLOGY, 2024, 261
  • [10] Research progress in water quality prediction based on deep learning technology: a review
    Li W.
    Zhao Y.
    Zhu Y.
    Dong Z.
    Wang F.
    Huang F.
    Environmental Science and Pollution Research, 2024, 31 (18) : 26415 - 26431