Using meta-heuristic algorithms with multi-layer perceptron for prediction of ultimate bearing capacity

被引:0
|
作者
Cai, Jie [1 ,2 ]
Zhou, Jinwen [1 ]
Li, Mingang [3 ]
Chen, Sheng [3 ]
机构
[1] Shenzhen Geol Bur, Shenzhen 518000, Guangdong, Peoples R China
[2] Shenzhen Geol Construct Engn Co, Shenzhen, Guangdong, Peoples R China
[3] Meizhou Geol Environm Monitoring Stn, Meizhou, Guangdong, Peoples R China
关键词
Ultimate bearing capacity; multi-layer perceptron; improved manta-ray foraging optimizer; artificial rabbits optimization; SHALLOW FOUNDATIONS; STONE COLUMNS; PILES;
D O I
10.1080/23080477.2024.2387929
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents an innovative approach to predicting the Ultimate Bearing Capacity (Qu) in civil engineering, integrating a Multi-layer Perceptron (MLP) neural network using the Artificial Rabbits Optimization (ARO) and Improved Manta-Ray Foraging Optimizer (IMRFO) methods. The MLP effectively captures complex, non-linear relationships within geotechnical datasets, while the IMRFO and ARO algorithms fine-tune the MLP's parameters for optimal performance. Validation results demonstrate the efficacy of this method, with the MLP+IMRFO (MLIM) model achieving an R(2 )value of 0.996 and a MARE of 0.113, highlighting its potential for enhancing predictive accuracy in civil engineering applications. This combined methodology offers a state-of-the-art solution for Qu forecasting, contributing to safer and more efficient construction practices. Graphical Abstract
引用
收藏
页数:19
相关论文
共 50 条