On the nonlinear Schrodinger-Poisson systems with positron-electron interaction

被引:0
|
作者
Chen, Ching-yu [1 ]
Kuo, Yueh-cheng [2 ]
Wu, Tsung-fang [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
[2] Natl Chengchi Univ, Dept Math Sci, Taipei 116, Taiwan
关键词
Schrodinger-Poisson systems; Positron-electron interaction; Variational methods; Ground state solutions; Vectorial solutions; POSITIVE SOLUTIONS; EQUATION;
D O I
10.1016/j.jde.2024.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Schrodinger-Poisson type system: {-Delta u+lambda u+(mu(11)phi u-mu(12)phi v)u=1/2 pi integral(2 pi)(0)|u+e(i theta)v|(p-1)(u+e(i theta)v)d theta in R-3, -Delta v+lambda v+(mu(22)phi v-mu(12)phi u)v=1/2 pi integral(2 pi)(0)|v+e(i theta)u|p-1(v+e(i theta)u)d theta in R-3, where 1<p<3 with parameters lambda,mu ij>0. Novel approaches are employed to prove the existence of a positive solution for 1<p<3 including, particularly, the finding of a ground state solution for 2 <= p<3 using established linear algebra techniques and demonstrating the existence of two distinct positive solutions for 1<p<2. The analysis here, by employing alternative techniques, yields additional and improved results to those obtained in the study of Jin and Seok (2023) [14].(c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AItraining, and similar technologies.
引用
收藏
页码:368 / 408
页数:41
相关论文
共 50 条
  • [1] Solitary waves for the nonlinear Schrodinger-Poisson system with positron-electron interaction
    Jin, Sangdon
    Seok, Jinmyoung
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [2] Multibump solutions for nonlinear Schrodinger-Poisson systems
    Yu, Mingzhu
    Chen, Haibo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4518 - 4529
  • [3] On a Class of Nonlinear Fractional Schrodinger-Poisson Systems
    Soluki, M.
    Rasouli, S. H.
    Afrouzi, G. A.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 : 123 - 132
  • [4] On Schrodinger-Poisson Systems
    Ambrosetti, Antonio
    MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 257 - 274
  • [5] SEMICLASSICAL GROUND STATES FOR NONLINEAR SCHRODINGER-POISSON SYSTEMS
    Zhang, Hui
    Zhang, Fubao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [6] Existence and multiplicity results for the nonlinear Schrodinger-Poisson systems
    Yang, Ming-Hai
    Han, Zhi-Qing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1093 - 1101
  • [7] Multiple Standing Waves for Nonlinear Schrodinger-Poisson Systems
    Zhou, Jian
    Wu, Yunshun
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [8] Dissipative Schrodinger-Poisson systems
    Baro, M
    Kaiser, HC
    Neidhardt, H
    Rehberg, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (01) : 21 - 43
  • [9] Exact Number of Peak Solutions for Nonlinear Schrodinger-Poisson Systems
    Chen, Lin
    Ding, Hui-Sheng
    He, Qihan
    ACTA APPLICANDAE MATHEMATICAE, 2023, 185 (01)
  • [10] On the nonlinear Schrodinger-Poisson systems with sign-changing potential
    Sun, Juntao
    Wu, Tsung-fang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1649 - 1669