Optimal Convergence of Thermoelastic Contact Problem Involving Nonlinear Hencky-Type Materials with Friction Conditions

被引:0
|
作者
El Khalfi, H. [1 ]
Faiz, Z. [1 ]
Baiz, O. [2 ]
Benaissa, H. [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab LMRI, FP Khouribga, Beni Mellal, Morocco
[2] Ibn Zohr Univ, Lab LSIE, FP Ouarzazate, Agadir, Morocco
关键词
Thermoelastic contact; Hencky-type materials; Priori error estimates; Penalty method; EXISTENCE;
D O I
10.1007/s40995-024-01677-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the linear finite element approximation of thermoelastic frictional contact problem. The unilateral contact condition is weakly imposed by the penalty method. Our analysis yields error estimates that are contingent upon the penalty parameter epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and the mesh size h. Furthermore, provided the solution maintains regularity, we establish a convergence result.
引用
收藏
页码:133 / 149
页数:17
相关论文
共 15 条