We study the linear finite element approximation of thermoelastic frictional contact problem. The unilateral contact condition is weakly imposed by the penalty method. Our analysis yields error estimates that are contingent upon the penalty parameter epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document} and the mesh size h. Furthermore, provided the solution maintains regularity, we establish a convergence result.
机构:
Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, RomaniaUniv Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
Matei, Andaluzia
Micu, Sorin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
Inst Math Stat & Appl Math, Bucharest, RomaniaUniv Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania
Micu, Sorin
Nita, Constantin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Craiova, Doctoral Sch Sci, Craiova, RomaniaUniv Craiova, Dept Math, AI Cuza 13, Craiova 200585, Romania