Scaling limit of an equilibrium surface under the Random Average Process

被引:0
|
作者
Fontes, Luiz Renato [1 ]
Machado, Mariela Penton [1 ]
Zuaznabar, Leonel [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
random average process; random surfaces; invariant measure; Gaussian fluctuation;
D O I
10.1214/24-EJP1181
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the equilibrium surface of the Random Average Process started from an inclined plane, as seen from the height of the origin, obtained in [8], where its fluctuations were shown to be of order of the square root of the distance to the origin in one dimension, and the square root of the log of that distance in two dimensions (and constant in higher dimensions). Remarkably, even if not pointed out explicitly in [8], the covariance structure of those fluctuations is given in terms of the Green's function of a certain random walk, and thus corresponds to those of Discrete Gaussian Free Fields. In the present paper we obtain the scaling limit of those fluctuations in one and two dimensions, in terms of Gaussian processes, in the sense of finite dimensional distributions. In one dimension, the limit is given by Brownian Motion; in two dimensions, we get a process with a discontinuous covariance function.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Infinite interacting diffusion particles I:: Equilibrium process and its scaling limit
    Kondratiev, Y
    Lytvynov, E
    Röckner, M
    FORUM MATHEMATICUM, 2006, 18 (01) : 9 - 43
  • [2] The scaling limit of random outerplanar maps
    Caraceni, Alessandra
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1667 - 1686
  • [3] The CRT is the scaling limit of random dissections
    Curien, Nicolas
    Haas, Benedicte
    Kortchemski, Igor
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (02) : 304 - 327
  • [4] Scaling limit of critical random trees in random environment
    Conchon-Kerjan, Guillaume
    Kious, Daniel
    Mailler, Cecile
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [5] ON THE LIMIT OF THE AVERAGE OF THE VALUES OF A FUNCTION AT RANDOM POINTS
    HOGNAS, G
    MUKHERJEA, A
    LECTURE NOTES IN MATHEMATICS, 1984, 1064 : 204 - 218
  • [6] THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS AND RANDOM SIMPLE QUADRANGULATIONS
    Addario-Berry, Louigi
    Albenque, Marie
    ANNALS OF PROBABILITY, 2017, 45 (05): : 2767 - 2825
  • [7] Scaling limit of the random walk among random traps on Zd
    Mourrat, Jean-Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03): : 813 - 849
  • [8] Scaling limit theorem for transient random walk in random environment
    Wenming Hong
    Hui Yang
    Frontiers of Mathematics in China, 2018, 13 : 1033 - 1044
  • [9] Scaling limit theorem for transient random walk in random environment
    Hong, Wenming
    Yang, Hui
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (05) : 1033 - 1044
  • [10] The scaling limit of random cubic planar graphs
    Stufler, Benedikt
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (05):