Quantile Regression Forest for Value-at-Risk Forecasting Via Mixed-Frequency Data

被引:0
|
作者
Andreani, Mila [1 ]
Candila, Vincenzo [2 ]
Petrella, Lea [2 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Sapienza Univ Rome, MEMOTEF Depart, Rome, Italy
关键词
Value-at-risk; Quantile regression; Random Forests; Mixed data sampling;
D O I
10.1007/978-3-030-99638-3_3
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper we introduce the use of mixed-frequency variables in a quantile regression framework to compute high-frequency conditional quantiles by means of low-frequency variables. We merge the well-known Quantile Regression Forest algorithm and the recently proposed Mixed-Data-Sampling model to build a comprehensive methodology to jointly model complexity, non-linearity and mixed-frequencies. Due to the link between quantile and the Value-at-Risk (VaR) measure, we compare our novel methodology with the most popular ones in VaR forecasting.
引用
下载
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [1] Quantile forecasting with mixed-frequency data
    Lima, Luiz Renato
    Meng, Fanning
    Godeiro, Lucas
    INTERNATIONAL JOURNAL OF FORECASTING, 2020, 36 (03) : 1149 - 1162
  • [2] Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall
    Candila, Vincenzo
    Gallo, Giampiero M.
    Petrella, Lea
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [3] Evaluating Value-at-Risk Models via Quantile Regression
    Gaglianone, Wagner Piazza
    Lima, Luiz Renato
    Linton, Oliver
    Smith, Daniel R.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (01) : 150 - 160
  • [4] Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information
    Xu, Yan
    Wang, Xinyu
    Liu, Hening
    FINANCE RESEARCH LETTERS, 2021, 43
  • [5] Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression*
    Chronopoulos, Ilias
    Raftapostolos, Aristeidis
    Kapetanios, George
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 22 (03) : 636 - 669
  • [6] Quantile forecasting with mixed-frequency data (vol 36, pg 1149, 2021)
    Lima, Luiz Renato
    Meng, Fanning
    Godeiro, Lucas
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (03) : 1307 - 1307
  • [7] Estimation of value-at-risk by Lp quantile regression
    Sun, Peng
    Lin, Fuming
    Xu, Haiyang
    Yu, Kaizhi
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024,
  • [8] Value-at-risk in the European energy market: a comparison of parametric, historical simulation and quantile regression value-at-risk
    Westgaard, Sjur
    Arhus, Gisle Hoel
    Frydenberg, Marina
    Frydenberg, Stein
    JOURNAL OF RISK MODEL VALIDATION, 2019, 13 (04): : 43 - 69
  • [9] Estimation of value-at-risk using single index quantile regression
    Christou, Eliana
    Grabchak, Michael
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (13) : 2418 - 2433
  • [10] Reservoir computing for macroeconomic forecasting with mixed-frequency data
    Ballarin, Giovanni
    Dellaportas, Petros
    Grigoryeva, Lyudmila
    Hirt, Marcel
    van Huellen, Sophie
    Ortega, Juan-Pablo
    INTERNATIONAL JOURNAL OF FORECASTING, 2024, 40 (03) : 1206 - 1237