Isomonodromic and isospectral deformations of meromorphic connections: the sl2(C) case

被引:0
|
作者
Marchal, Olivier [1 ]
Alameddine, Mohamad [2 ]
机构
[1] Univ Jean Monnet St Etienne, Inst Camille Jordan UMR 5208, Inst Univ France, CNRS, F-42023 St Etienne, France
[2] Univ Jean Monnet St Etienne, Inst Camille Jordan UMR 5208, CNRS, F-42023 St Etienne, France
关键词
isomonodromic deformations; isospectral deformations; Hamiltonian systems; meromorphic connections; ORDINARY DIFFERENTIAL-EQUATIONS; MOMENT MAPS; GEOMETRY;
D O I
10.1088/1361-6544/ad7b96
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-twisted meromorphic connections in sl(2)(C) and the associated symplectic Hamiltonian structure. In particular, we provide explicit expressions of the Lax pair in the geometric gauge supplementing results of Marchal et al (2022 arXiv:2212.04833) where explicit formulas have been obtained in the oper gauge. Expressing the geometric Lax matrices requires the introduction of specific Darboux coordinates for which we provide the explicit Hamiltonian evolutions. These expressions allow to build bridges between the isomonodromic deformations and the isospectral ones. More specifically, we propose an explicit change of Darboux coordinates to obtain isospectral coordinates for which Hamiltonians match the spectral invariants. This result solves the issue left opened in Bertola et al (2023 J. Math. Phys. 64 083502) in the case of sl(2)(C).
引用
收藏
页数:81
相关论文
共 50 条