Carbon dioxide resource utilization in methanol products: Carbon emission projections, visual analysis, life cycle assessment

被引:0
|
作者
Chen, Tian-yu [1 ]
Wang, Chao-qiang [1 ]
Cheng, Lin-xiao [1 ]
Zhang, Jing-jie [2 ]
机构
[1] Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[2] Chongqing Bldg Sci Res Inst Co Ltd, Chongqing 400000, Peoples R China
基金
中国博士后科学基金;
关键词
Carbon reduction; Methanol preparation; Resource utilization; CO2; emission; CO2; HYDROGENATION; BUILDING SECTOR; POWER-PLANT; ENERGY; CHALLENGES; CATALYSIS;
D O I
10.1016/j.jics.2024.101336
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
China is becoming the world's biggest energy consumer and carbon dioxide emitter due to the excessive worldwide emissions of carbon dioxide. As a result, resource utilization and carbon emission reduction have taken center stage in China's energy growth. This paper provides an overview and analysis of China's annual total carbon emissions from 2012 to 2021, as well as a projection of the country's key carbon emission industries' carbon dioxide emissions over the next several decades. With the help of the Web of Science bibliometric analysis function and the CiteSpace software visual analysis function, it analyzes the systematic knowledge mapping of the research literature related to carbon emission reduction, which corroborates that carbon emission reduction is the future. Further strengthening the research on carbon dioxide resource utilization is expected to add bricks and mortar to the beautiful vision of "carbon neutrality" by 2060. The consumption of hydrogenated carbon dioxide (CO2) 2 ) for the production of one ton of methanol can reach up to 1431 tons. This process is an effective and environmentally friendly method for reducing carbon emissions. The methodology and mechanism of utilizing carbon dioxide resources for methanol preparation are systematically summarized, with a specific focus on the application of green methanol as ship fuel. The analysis primarily examines the calculation of carbon emissions throughout the entire life cycle of carbon dioxide and the production of green hydrogen for methanol. The hypothesis is that low-carbon methanol emissions are one-third lower than those of fuel oil, and this conclusion is further supported by evidence showing that low-carbon methanol has a significant carbon reduction effect. Simapro 9.0 software was used to evaluate the life cycle of carbon dioxide preparation for methanol production. The results indicated that the factors with the greatest influence are CO2 2 utilization and green hydrogen production. To make the process more environmentally friendly, the capture process should be improved, and efforts should be made to reduce electricity consumption and coal usage. These measures can effectively reduce the environmental impact of the entire production chain. Furthermore, it anticipates the future utilization of carbon dioxide resources in the application market of the new materials industry, and aims to further advance the development of the methanol industry.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Life Cycle Carbon Dioxide Emission Assessment of housing in Taiwan
    Chang, Yu-Sheng
    Lee, Kuei-Peng
    APPLIED SCIENCE AND PRECISION ENGINEERING INNOVATION, PTS 1 AND 2, 2014, 479-480 : 1071 - +
  • [2] Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls
    von der Assen, Niklas
    Jung, Johannes
    Bardow, Andre
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) : 2721 - 2734
  • [3] Review of Carbon Emission and Carbon Neutrality in the Life Cycle of Silk Products
    Liu, Shuyi
    Liu, Hong
    Meng, Yudong
    Li, Qizheng
    Wang, Laili
    FIBRES & TEXTILES IN EASTERN EUROPE, 2022, 30 (02) : 1 - 7
  • [4] Life Cycle Assessment of Carbon Dioxide-Based Production of Methane and Methanol and Derived Polymers
    Hoppe, Wieland
    Thonemann, Nils
    Bringezu, Stefan
    JOURNAL OF INDUSTRIAL ECOLOGY, 2018, 22 (02) : 327 - 340
  • [5] A systematic life cycle assessment of the electroconversion of carbon dioxide
    Blazer, Scott J.
    Wang, Yudong
    Xu, Nengneng
    Zhou, Xiao-Dong
    Marchetti, Barbara
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2024, 61
  • [6] A Guideline for Life Cycle Assessment of Carbon Capture and Utilization
    Mueller, Leonard Jan
    Kaetelhoen, Arne
    Bachmann, Marvin
    Zimmermann, Arno
    Sternberg, Andre
    Bardow, Andre
    FRONTIERS IN ENERGY RESEARCH, 2020, 8
  • [7] Carbon dioxide emission during the life cycle of turbofan aircraft
    Jakovljevic, Ivan
    Mijailovic, Radomir
    Mirosavljevic, Petar
    ENERGY, 2018, 148 : 866 - 875
  • [8] Life Cycle Assessment of Innovative Carbon Dioxide Selective Membranes from Low Carbon Emission Sources: A Comparative Study
    Nilkar, Amit S.
    Orme, Christopher J.
    Klaehn, John R.
    Zhao, Haiyan
    Adhikari, Birendra
    MEMBRANES, 2023, 13 (04)
  • [9] Life cycle assessment of a carbon capture utilization and storage supply chain in Italy and Germany: Comparison between carbon dioxide storage and utilization systems
    Leonzio, Grazia
    Bogle, I. David L.
    Foscolo, Pier Ugo
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 55
  • [10] Life cycle assessment of methanol production by a carbon capture and utilization technology applied to steel mill gases
    Rigamonti, Lucia
    Brivio, Elisabetta
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 115