Alterations in Gray Matter Structural Networks in Amnestic Mild Cognitive Impairment: A Source-Based Morphometry Study

被引:0
|
作者
Setiadi, Tania M. [1 ]
Marsman, Jan-Bernard C. [1 ]
Martens, Sander [1 ]
Tumati, Shankar [1 ,2 ]
Opmeer, Esther M. [1 ,3 ]
Reesink, Fransje E. [4 ]
Deyn, Peter P. De [4 ,5 ]
Atienza, Mercedes [6 ,7 ]
Cantero, Jose L. [6 ,7 ]
Aleman, Andre [1 ,8 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Cognit Neurosci Ctr, Dept Biomed Sci Cells & Syst, Groningen, Netherlands
[2] Univ Toronto, Sunnybrook Res Inst, Neuropsychopharmacol Res Grp, Toronto, ON, Canada
[3] Windesheim Univ Appl Sci, Dept Hlth & Welf, Zwolle, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Neurol, Groningen, Netherlands
[5] Univ Antwerp, Lab Neurochem & Behav, Expt Neurobiol Grp, Antwerp, Belgium
[6] Pablo Olavide Univ, Lab Funct Neurosci, Seville, Spain
[7] Inst Salud Carlos III, CIBER Enfermedades Neurodegenerat CIBERNED, Madrid, Spain
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Psychol, Groningen, Netherlands
关键词
Alzheimer's disease; amnestic mild cognitive impairment; magnetic resonance imaging; source-based morphom- etry; structural network; INDEPENDENT COMPONENT ANALYSIS; ALZHEIMERS-DISEASE; PATTERNS; ATROPHY; RISK; ABNORMALITIES; PROGRESSION; VALIDATION; CEREBELLUM; PEOPLE;
D O I
10.3233/JAD-231196
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Amnestic mild cognitive impairment (aMCI), considered as the prodromal stage of Alzheimer's disease, is characterized by isolated memory impairment and cerebral gray matter volume (GMV) alterations. Previous structural MRI studies in aMCI have been mainly based on univariate statistics using voxel-based morphometry. Objective: We investigated structural network differences between aMCI patients and cognitively normal older adults by using source-based morphometry, a multivariate approach that considers the relationship between voxels of various parts of the brain. Methods: Ninety-one aMCI patients and 80 cognitively normal controls underwent structural MRI and neuropsychological assessment. Spatially independent components (ICs) that covaried between participants were estimated and a multivariate analysis of covariance was performed with ICs as dependent variables, diagnosis as independent variable, and age, sex, education level, and site as covariates. Results: aMCI patients exhibited reduced GMV in the precentral, temporo-cerebellar, frontal, and temporal network, and increased GMV in the left superior parietal network compared to controls (pFWER < 0.05, Holm-Bonferroni correction). Moreover, we found that diagnosis, more specifically aMCI, moderated the positive relationship between occipital network and Mini-Mental State Examination scores (pFWER < 0.05, Holm-Bonferroni correction). Conclusions: Our results showed GMV alterations in temporo-fronto-parieto-cerebellar networks in aMCI, extending previous results obtained with univariate approaches.
引用
收藏
页码:61 / 73
页数:13
相关论文
共 50 条
  • [1] Gray matter in amnestic mild cognitive impairment: voxel-based morphometry
    Bonekamp, David
    Yassa, Michael A.
    Munro, Cynthia A.
    Geckle, Rena J.
    Yousem, David M.
    Barker, Peter B.
    Schretlen, David J.
    Brandt, Jason
    Horska, Alena
    NEUROREPORT, 2010, 21 (04) : 259 - 263
  • [2] Profile of memory impairment and gray matter loss in amnestic mild cognitive impairment
    Barbeau, E. J.
    Ranjeva, J. P.
    Didic, A.
    Confort-Gouny, S.
    Felician, O.
    Soulier, E.
    Cozzone, P. J.
    Ceccaldi, M.
    Poncet, A.
    NEUROPSYCHOLOGIA, 2008, 46 (04) : 1009 - 1019
  • [3] Executive dysfunction and gray matter atrophy in amnestic mild cognitive impairment
    Zheng, Dongming
    Sun, Hongzan
    Dong, Xiaoyu
    Liu, Baiwei
    Xu, Yongchuan
    Chen, Sipan
    Song, Lichun
    Zhang, Hong
    Wang, Xiaoming
    NEUROBIOLOGY OF AGING, 2014, 35 (03) : 548 - 555
  • [4] Common and different gray and white matter alterations in bipolar and borderline personality disorder: A source-based morphometry study
    Lapomarda, Gaia
    Grecucci, Alessandro
    Messina, Irene
    Pappaianni, Edoardo
    Dadomo, Harold
    BRAIN RESEARCH, 2021, 1762
  • [5] Alterations in working memory networks in amnestic mild cognitive impairment
    Migo, E. M.
    Mitterschiffthaler, M.
    O'Daly, O.
    Dawson, G. R.
    Dourish, C. T.
    Craig, K. J.
    Simmons, A.
    Wilcock, G. K.
    McCulloch, E.
    Jackson, S. H. D.
    Kopelman, M. D.
    Williams, S. C. R.
    Morris, R. G.
    AGING NEUROPSYCHOLOGY AND COGNITION, 2015, 22 (01) : 106 - 127
  • [6] Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment
    Chételat, G
    Desgranges, B
    de la Sayette, V
    Viader, F
    Eustache, F
    Baron, JC
    NEUROREPORT, 2002, 13 (15) : 1939 - 1943
  • [7] The co-existence of geriatric depression and amnestic mild cognitive impairment detrimentally affect gray matter volumes: Voxel-based morphometry study
    Xie, Chunming
    Li, Wenjun
    Chen, Gang
    Ward, B. Douglas
    Franczak, Malgorzata B.
    Jones, Jennifer L.
    Antuono, Piero G.
    Li, Shi-Jiang
    Goveas, Joseph S.
    BEHAVIOURAL BRAIN RESEARCH, 2012, 235 (02) : 244 - 250
  • [8] Divergent Connectivity Changes in Gray Matter Structural Covariance Networks in Subjective Cognitive Decline, Amnestic Mild Cognitive Impairment, and Alzheimer's Disease
    Fu, Zhenrong
    Zhao, Mingyan
    He, Yirong
    Wang, Xuetong
    Lu, Jiadong
    Li, Shaoxian
    Li, Xin
    Kang, Guixia
    Han, Ying
    Li, Shuyu
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [9] Voxel-based Morphometry of Whole Brain Gray Matter in Patients with Late-life Depressive Disorder and Amnestic Mild Cognitive Impairment
    Cheng, C.
    Wang, T.
    Sun, L.
    Lin, X.
    Yang, C. C.
    Li, X.
    Li, G. J.
    Xiao, S. F.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2014, 62 : S383 - S383
  • [10] Gray matter volume covariance networks are associated with altered emotional processing in bipolar disorder: a source-based morphometry study
    Alessandro Miola
    Nicolò Trevisan
    Arcangelo Merola
    Francesco Folena Comini
    Daniele Olivo
    Matteo Minerva
    Silvia Valeggia
    Tommaso Toffanin
    Angela Favaro
    Renzo Manara
    Fabio Sambataro
    Brain Imaging and Behavior, 2022, 16 : 738 - 747