Brokering Spectrum Sharing Using Dynamic Spatial-Spectral Masks

被引:0
|
作者
Goad, Adam [1 ]
Seguin, Sarah A. [2 ]
Baylis, Charles [1 ]
Van Hoosier, Trevor [1 ]
Lever, Emma
Gasiewski, Albin [3 ]
Venkitasubramony, Aravind
Marks II, Robert J.
机构
[1] Baylor Univ, Dept Elect & Comp Engn, Waco, TX 76798 USA
[2] Aerosp Corp, Chantilly, VA 20151 USA
[3] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Electromagnetic interference; fifth generation (5G); frequency assignment; radiometers; spectrum sharing; spurious emissions; RADAR; INTERFERENCE; EFFICIENCY; POWER;
D O I
10.1109/TEMC.2024.3403510
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Continued spectral crowding can potentially affect the operation of critical passive devices, such as radiometers and radio telescopes. Proliferation of fifth generation (5G) wireless communication systems in the 24-30 GHz band could cause massive interference with satellite-based radiometers that operate in the 23.6-24.0 GHz (from out-of-band spurious emissions) and the 50-58 GHz bands (from spurious harmonic operation of 5G systems). A brokering system is presented to protect crucial passive devices from unwanted interference by coordinating with active systems and limiting both in-band and out-of-band electromagnetic emissions from the active systems. Based on interference criteria presented by the passive systems to the broker, a spatial-spectral mask is created to limit the transmission of the active device in both the spatial and frequency domains.
引用
收藏
页码:1243 / 1251
页数:9
相关论文
共 50 条
  • [1] Spatial-spectral unmixing using the sensor PSF
    Frans, EP
    Schowengerdt, RA
    IMAGING SPECTROMETRY III, 1997, 3118 : 241 - 249
  • [2] Spatial-spectral preprocessing for spectral unmixing
    Yan, Yang
    Hua, Wenshen
    Liu, Xun
    Cui, Zihao
    Diao, Dongmei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (04) : 1357 - 1373
  • [3] Passive Standoff Imaging using Spatial-Spectral Multiplexing
    Woodard, Ethan R.
    Kudenov, Michael W.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXI, 2015, 9472
  • [4] Clustering Multispectral Images Using Spatial-Spectral Information
    Fatemi, Sayyed Bagher
    Mobasheri, Mohammad Reza
    Abkar, Ali Akbar
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (07) : 1521 - 1525
  • [5] Hyperspectral image segmentation using spatial-spectral graphs
    Gillis, David B.
    Bowles, Jeffrey H.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [6] Spatial-Spectral Terahertz Networks
    Lin, Zheng
    Wang, Lifeng
    Tan, Bo
    Li, Xiang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3881 - 3892
  • [7] Spatial-Spectral Unmixing using Fuzzy Local Information
    Zare, Alina
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1139 - 1142
  • [8] Spectrum Sharing Policy for a Cooperative Brokering System
    Hussey, Samuel
    Clegg, Andrew
    Baylis, Charles
    Egbert, Austin
    Goad, Adam
    Van Hoosier, Trevor
    Marks, Robert J., II
    2023 IEEE TEXAS SYMPOSIUM ON WIRELESS AND MICROWAVE CIRCUITS AND SYSTEMS, WMCS, 2023,
  • [9] Hyper-spectral image classification using spatial-spectral manifold reconstruction
    Huang H.
    Chen M.-L.
    Duan Y.-L.
    Shi G.-Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2018, 26 (07): : 1827 - 1836
  • [10] Spatial-spectral joint detection for wideband spectrum sensing in cognitive radio networks
    Quan, Zhi
    Cui, Shuguang
    Sayed, Ali H.
    Poor, H. Vincent
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2793 - +