Target-Aware Image Denoising for Inverse Monte Carlo Rendering

被引:0
|
作者
Gu, Jeongmin [1 ]
Back, Jonghee [1 ]
Yoon, Sung-Eui [2 ]
Moon, Bochang [1 ]
机构
[1] Gwangju Inst Sci & Technol, Gwangju, South Korea
[2] Korea Adv Inst Sci & Technol, Deajeon, South Korea
来源
ACM TRANSACTIONS ON GRAPHICS | 2024年 / 43卷 / 04期
基金
新加坡国家研究基金会;
关键词
linear regression; image denoising; differentiable rendering; inverse rendering;
D O I
10.1145/3658182
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Physically based differentiable rendering allows an accurate light transport simulation to be differentiated with respect to the rendering input, i.e., scene parameters, and it enables inferring scene parameters from target images, e.g., photos or synthetic images, via an iterative optimization. However, this inverse Monte Carlo rendering inherits the fundamental problem of the Monte Carlo integration, i.e., noise, resulting in a slow optimization convergence. An appealing approach to addressing such noise is exploiting an image denoiser to improve optimization convergence. Unfortunately, the direct adoption of existing image denoisers designed for ordinary rendering scenarios can drive the optimization into undesirable local minima due to denoising bias. It motivates us to reformulate a new image denoiser specialized for inverse rendering. Unlike existing image denoisers, we conduct our denoising by considering the target images, i.e., specific information in inverse rendering. For our target-aware denoising, we determine our denoising weights via a linear regression technique using the target. We demonstrate that our denoiser enables inverse rendering optimization to infer scene parameters robustly through a diverse set of tests.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Removing the Noise in Monte Carlo Rendering with General Image Denoising Algorithms
    Kalantari, Nima Khademi
    Sen, Pradeep
    [J]. COMPUTER GRAPHICS FORUM, 2013, 32 (02) : 93 - 102
  • [2] Bayesian Collaborative Denoising for Monte Carlo Rendering
    Boughida, Malik
    Boubekeur, Tamy
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 137 - 153
  • [3] Robust Deep Residual Denoising for Monte Carlo Rendering
    Wong, Kin-Ming
    Wong, Tien-Tsin
    [J]. SA'18: SIGGRAPH ASIA 2018 TECHNICAL BRIEFS, 2018,
  • [4] Converging Algorithm-Agnostic Denoising for Monte Carlo Rendering
    Denisova, Elena
    Bocchi, Leonardo
    [J]. PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2024, 7 (03)
  • [5] Joint self-attention for denoising Monte Carlo rendering
    Oh, Geunwoo
    Moon, Bochang
    [J]. VISUAL COMPUTER, 2024, 40 (07): : 4623 - 4634
  • [6] Target-Aware Deep Tracking
    Li, Xin
    Ma, Chao
    Wu, Baoyuan
    He, Zhenyu
    Yang, Ming-Hsuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1369 - 1378
  • [7] A framework for developing and benchmarking sampling and denoising algorithms for Monte Carlo rendering
    Brito dos Santos, Jonas Deyson
    Sen, Pradeep
    Oliveira, Manuel M.
    [J]. VISUAL COMPUTER, 2018, 34 (6-8): : 765 - 778
  • [8] A framework for developing and benchmarking sampling and denoising algorithms for Monte Carlo rendering
    Jonas Deyson Brito dos Santos
    Pradeep Sen
    Manuel M. Oliveira
    [J]. The Visual Computer, 2018, 34 : 765 - 778
  • [9] Deep Compositional Denoising for High-quality Monte Carlo Rendering
    Zhang, Xianyao
    Manzi, Marco
    Vogels, Thijs
    Dahlberg, Henrik
    Gross, Markus
    Papas, Marios
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (04) : 1 - 13
  • [10] LComparison of Denoising Effects by Filtering Algorithms for the Monte-Carlo Rendering
    Faradounbeh, Soroor Malekmohammadi
    Kim, SeongKi
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 84 - 84