PMC-VIS: An Interactive Visualization Tool for Probabilistic Model Checking

被引:0
|
作者
Korn, Max [1 ]
Mendez, Julian [2 ]
Klueppelholz, Sascha [1 ]
Langner, Ricardo [2 ]
Baier, Christel [1 ]
Dachselt, Raimund [2 ]
机构
[1] Tech Univ Dresden, Inst Theoret Comp Sci, Dresden, Germany
[2] Tech Univ Dresden, Interact Media Lab Dresden, Dresden, Germany
关键词
D O I
10.1007/978-3-031-47115-5_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
State-of-the-art Probabilistic Model Checking (PMC) offers multiple engines for the quantitative analysis of Markov Decision Processes (MDPs), including rewards modeling cost or utility values. Despite the huge amount of internally computed information, support for debugging and facilities that enhance the understandability of PMC models and results are very limited. As a first step to improve on that, we present the basic principles of PMC-VIS, a tool that supports the exploration of large MDPs together with the computed PMC results per MDP-state through interactive visualization. By combining visualization techniques, such as node-link diagrams and parallel coordinates, with quantitative analysis capabilities, PMC-VIS supports users in gaining insights into the probabilistic behavior of MDPs and PMC results and enables different ways to explore the behaviour of schedulers of multiple target properties. The usefulness of PMC-VIS is demonstrated through three different application scenarios.
引用
收藏
页码:361 / 375
页数:15
相关论文
共 50 条
  • [1] PRISM 2.0: A tool for probabilistic model checking
    Kwiatkowska, M
    Norman, G
    Parker, D
    [J]. QEST 2004: FIRST INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, PROCEEDINGS, 2004, : 322 - 323
  • [2] Demo of "Vis Magna" : a Custom and Interactive Tool for the Visualization of VANET Protocols
    Brevi, Daniele
    Cozzetti, H. Agustin
    Scopigno, Riccardo M.
    Xu, Qing
    [J]. 2011 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2011,
  • [3] Interactive and probabilistic proof-checking
    Trevisan, L
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2000, 104 (1-3) : 325 - 342
  • [4] Solving Influence Problems on the DeGroot Model with a Probabilistic Model Checking Tool
    Gyftopoulos, Sotirios
    Efraimidis, Pavlos S.
    Katsaros, Panagiotis
    [J]. 20TH PAN-HELLENIC CONFERENCE ON INFORMATICS (PCI 2016), 2016,
  • [5] Probabilistic Model Checking
    Baier, Christel
    [J]. DEPENDABLE SOFTWARE SYSTEMS ENGINEERING, 2016, 45 : 1 - 23
  • [6] Compiling Probabilistic Model Checking into Probabilistic Planning
    Klauck, Michaela
    Steinmetz, Marcel
    Hoffmann, Joerg
    Hermanns, Holger
    [J]. TWENTY-EIGHTH INTERNATIONAL CONFERENCE ON AUTOMATED PLANNING AND SCHEDULING (ICAPS 2018), 2018, : 150 - 154
  • [7] Approximate probabilistic model checking
    Hérault, T
    Lassaigne, R
    Magniette, F
    Peyronnet, S
    [J]. VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, PROCEEDINGS, 2004, 2937 : 73 - 84
  • [8] Probabilistic Model Checking for Biology
    Kwiatkowska, Marta
    Thachuk, Chris
    [J]. SOFTWARE SYSTEMS SAFETY, 2014, 36 : 165 - 189
  • [9] Distributional Probabilistic Model Checking
    Elsayed-Aly, Ingy
    Parker, David
    Feng, Lu
    [J]. NASA FORMAL METHODS, NFM 2024, 2024, 14627 : 57 - 75
  • [10] The Probabilistic Model Checking Landscape
    Katoen, Joost-Pieter
    [J]. PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 31 - 45