Leveraging Uncertainty for Depth-Aware Hierarchical Text Classification

被引:0
|
作者
Wu, Zixuan [1 ]
Wang, Ye [1 ]
Shen, Lifeng [2 ]
Hu, Feng [1 ]
Yu, Hong [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400000, Peoples R China
[2] Hong Kong Univ Sci & Technol, Div Emerging Interdisciplinary Areas, Hong Kong 999077, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 03期
基金
中国国家自然科学基金;
关键词
Hierarchical text classification; incomplete text-label matching; uncertainty; depth-aware; early stopping strategy;
D O I
10.32604/cmc.2024.054581
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hierarchical Text Classification (HTC) aims to match text to hierarchical labels. Existing methods overlook two critical issues: first, some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target. Second, error propagation occurs when a misclassification at a parent node propagates down the hierarchy, ultimately leading to inaccurate predictions at the leaf nodes. To address these limitations, we propose an uncertainty-guided HTC depth-aware model called DepthMatch. Specifically, we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels, classifying them into the corresponding parent node labels. This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty. Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets: WOS (Web of Science), RCV1-V2 (Reuters Corpus Volume I), AAPD (Arxiv Academic Paper Dataset), and BGC. Notably, on the BGC dataset, it improves Micro-F1 and Macro-F1 scores by at least 1.09% and 1.74%, respectively.
引用
收藏
页码:4111 / 4127
页数:17
相关论文
共 50 条
  • [1] Depth-Aware Mirror Segmentation
    Mei, Haiyang
    Dong, Bo
    Dong, Wen
    Peers, Pieter
    Yang, Xin
    Zhang, Qiang
    Wei, Xiaopeng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3043 - 3052
  • [2] Depth-Aware Motion Magnification
    Kooij, Julian F. P.
    van Gemert, Jan C.
    [J]. COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 467 - 482
  • [3] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [4] Depth-Aware Shadow Removal
    Fu, Yanping
    Gai, Zhenyu
    Zhao, Haifeng
    Zhang, Shaojie
    Shan, Ying
    Wu, Yang
    Tang, Jin
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 455 - 464
  • [5] Depth-Aware Unpaired Video Dehazing
    Yang, Yang
    Guo, Chun-Le
    Guo, Xiaojie
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2388 - 2403
  • [6] Depth-Aware Stereo Video Retargeting
    Li, Bing
    Lin, Chia-Wen
    Shi, Boxin
    Huang, Tiejun
    Gao, Wen
    Kuo, C. -C. Jay
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6517 - 6525
  • [7] Depth-Aware Image Seam Carving
    Shen, Jianbing
    Wang, Dapeng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (05) : 1453 - 1461
  • [8] Depth-Aware Image Colorization Network
    Chu, Wei-Ta
    Hsu, Yu-Ting
    [J]. PROCEEDINGS OF THE 2018 WORKSHOP ON UNDERSTANDING SUBJECTIVE ATTRIBUTES OF DATA, WITH THE FOCUS ON EVOKED EMOTIONS (EE-USAD'18), 2018, : 17 - 23
  • [9] Depth-Aware Video Frame Interpolation
    Bao, Wenbo
    Lai, Wei-Sheng
    Ma, Chao
    Zhang, Xiaoyun
    Gao, Zhiyong
    Yang, Ming-Hsuan
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3698 - 3707
  • [10] Depth-aware image vectorization and editing
    Shufang Lu
    Wei Jiang
    Xuefeng Ding
    Craig S. Kaplan
    Xiaogang Jin
    Fei Gao
    Jiazhou Chen
    [J]. The Visual Computer, 2019, 35 : 1027 - 1039