JOINT MODELING OF MULTISTATE AND NONPARAMETRIC MULTIVARIATE LONGITUDINAL DATA

被引:0
|
作者
You, Lu [1 ]
Salami, Falastin [2 ]
Torn, Carina [2 ]
Lernmark, Ake [2 ]
Tamura, Roy [1 ]
机构
[1] Univ S Florida, Hlth Informat Inst, Tampa, FL 33612 USA
[2] Lund Univ, Dept Clin Sci, Lund, Sweden
来源
ANNALS OF APPLIED STATISTICS | 2024年 / 18卷 / 03期
基金
美国国家卫生研究院;
关键词
Joint modeling; multistate model; spline regression model; type-1; diabetes; MONTE CARLO METHODS; SURVIVAL; EVENT; TIME; AUTOANTIBODIES; LIKELIHOOD;
D O I
10.1214/24-AOAS1889
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is oftentimes the case in studies of disease progression that subjects can move into one of several disease states of interest. Multistate models are an indispensable tool to analyze data from such studies. The Environmental Determinants of Diabetes in the Young (TEDDY) is an observational study of at-risk children from birth to onset of type-1 diabetes (T1D) up through the age of 15. A joint model for simultaneous inference of multistate and multivariate nonparametric longitudinal data is proposed to analyze data and answer the research questions brought up in the study. The proposed method allows us to make statistical inferences, test hypotheses, and make predictions about future state occupation in the TEDDY study. The performance of the proposed method is evaluated by simulation studies. The proposed method is applied to the motivating example to demonstrate the capabilities of the method.
引用
收藏
页码:2444 / 2461
页数:18
相关论文
共 50 条
  • [1] Joint modeling of multivariate nonparametric longitudinal data and survival data: A local smoothing approach
    You, Lu
    Qiu, Peihua
    STATISTICS IN MEDICINE, 2021, 40 (29) : 6689 - 6706
  • [2] Nonparametric multistate representations of survival and longitudinal data with measurement error
    Hu, Bo
    Li, Liang
    Wang, Xiaofeng
    Greene, Tom
    STATISTICS IN MEDICINE, 2012, 31 (21) : 2303 - 2317
  • [3] NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA
    Xiang, Dongdong
    Qiu, Peihua
    Pu, Xiaolong
    STATISTICA SINICA, 2013, 23 (02) : 769 - 789
  • [4] Estimation and inference of the joint conditional distribution for multivariate longitudinal data using nonparametric copulas
    Kwak, Minjung
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (03) : 491 - 514
  • [5] Two-Stage Joint Model for Multivariate Longitudinal and Multistate Processes, with Application to Renal Transplantation Data
    Alafchi, Behnaz
    Mahjub, Hossein
    Tapak, Leili
    Roshanaei, Ghodratollah
    Amirzargar, Mohammad Ali
    JOURNAL OF PROBABILITY AND STATISTICS, 2021, 2021
  • [6] Joint model with latent state for longitudinal and multistate data
    Dantan, E.
    Joly, P.
    Dartigues, J. -F.
    Jacqmin-Gadda, H.
    BIOSTATISTICS, 2011, 12 (04) : 723 - 736
  • [7] Nonparametric Bayes Modeling of Multivariate Categorical Data
    Dunson, David B.
    Xing, Chuanhua
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1042 - 1051
  • [8] Nonparametric Bayesian modeling for multivariate ordinal data
    Kottas, A
    Müller, P
    Quintana, F
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (03) : 610 - 625
  • [9] Joint models for multivariate longitudinal and multivariate survival data
    Chi, Yueh-Yun
    Ibrahim, Joseph G.
    BIOMETRICS, 2006, 62 (02) : 432 - 445
  • [10] A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data
    Kundu, Damitri
    Krishnan, Shekhar
    Gogoi, Manash Pratim
    Das, Kiranmoy
    LIFETIME DATA ANALYSIS, 2024, 30 (03) : 680 - 699