Characterizing the Solar Wind-Magnetosphere Viscous Interaction at Uranus and Neptune

被引:1
|
作者
Donaldson, Katelin [1 ]
Olsen, Angela J. [2 ]
Paty, Carol S. [1 ,2 ]
Caggiano, Joe [2 ,3 ]
机构
[1] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[2] Univ Oregon, Dept Earth Sci, Eugene, OR USA
[3] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
关键词
ice giants; magnetospheres; Kelvin Helmholtz instabilities; magnetic reconnection; magnetopause; KELVIN-HELMHOLTZ INSTABILITY; PLASMA DEPLETION; MAGNETIC RECONNECTION; BOW SHOCK; TRANSPORT; VOYAGER; FIELDS;
D O I
10.1029/2024JA032518
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solar wind interaction with planetary magnetospheres dictates the mechanism through which energy is transported across planetary systems. The magnetohydrodynamic plasma description suggests that solar wind conditions in the outer solar system encourage the magnetopause boundaries at Uranus and Neptune to be more Kelvin-Helmholtz unstable, however, no quantitative assessment has been performed. To characterize the viscous solar wind interaction at Uranus and Neptune, we create an analytical model to determine where Kelvin-Helmholtz Instabilities (KHIs) may form along their magnetopauses by searching for regions where the minimum condition for KHI formation is satisfied. We run the model at solstice and equinox for a range of Interplanetary Magnetic Field (IMF) strengths, and rotation phases. We find minimal seasonal variation for low IMF strengths (B = 0.01 nT), with similar to 70% of the magnetopause surface at Uranus and similar to 80% at Neptune, enabling KHI formation. For periods of stronger IMF strength (B > 0.3 nT), KHIs were significantly suppressed. While KHIs depend on both the conditions inside the magnetopause boundary and the shocked solar wind IMF strength, we find that the IMF strength is the most significant criterion in determining whether or not KHIs are allowed to form at the magnetopause boundaries.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Viscous-type processes in the solar wind-magnetosphere interaction
    Charles J. Farrugia
    Fausto T. Gratton
    Roy B. Torbert
    [J]. Space Science Reviews, 2001, 95 : 443 - 456
  • [2] Viscous-type processes in the solar wind-magnetosphere interaction
    Farrugia, CJ
    Gratton, FT
    Torbert, RB
    [J]. SPACE SCIENCE REVIEWS, 2001, 95 (1-2) : 443 - 456
  • [3] Dynamics of the solar wind-magnetosphere interaction - Preface
    Safrankova, J
    Nemecek, Z
    Richardson, JD
    [J]. PLANETARY AND SPACE SCIENCE, 2005, 53 (1-3) : 1 - 2
  • [4] A semiempirical magnetosheath model to analyze the solar wind-magnetosphere interaction
    Kallio, EJ
    Koskinen, HEJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A12) : 27469 - 27479
  • [5] Data-derived analogues of the solar wind-magnetosphere interaction
    Klimas, AJ
    Vassiliadis, D
    Baker, DN
    Valdivia, JA
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART C-SOLAR-TERRESTIAL AND PLANETARY SCIENCE, 1999, 24 (1-3): : 37 - 44
  • [6] NON-STEADY-STATE SOLAR WIND-MAGNETOSPHERE INTERACTION
    LEMAIRE, J
    ROTH, M
    [J]. SPACE SCIENCE REVIEWS, 1991, 57 (1-2) : 59 - 108
  • [7] Decoding solar wind-magnetosphere coupling
    Beharrell, M. J.
    Honary, F.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (10): : 724 - 741
  • [8] Editorial: Solar wind-Magnetosphere interactions
    Wing, Simon
    Borovsky, Joseph E.
    Holappa, Lauri
    Khabarova, Olga
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [9] VISCOUS INTERACTION AT SOLAR WIND MAGNETOSPHERE BOUNDARY
    RAJARAM, R
    KALRA, GL
    TANDON, JN
    [J]. JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1973, 35 (11): : 2069 - 2079
  • [10] The Double Pulsar: Wind-Magnetosphere Interaction
    Gourgouliatos, K. N.
    Lyutikov, M.
    Lomiashvili, D.
    Perera, B. B. P.
    [J]. RADIO PULSARS: AN ASTROPHYSICAL KEY TO UNLOCK THE SECRETS OF THE UNIVERSE, 2011, 1357 : 304 - +