Semi-supervised Brain Tumor Segmentation Using Diffusion Models

被引:5
|
作者
Alshenoudy, Ahmed [1 ]
Sabrowsky-Hirsch, Bertram [1 ]
Thumfart, Stefan [1 ]
Giretzlehner, Michael [1 ]
Kobler, Erich [2 ]
机构
[1] RISC Software GmbH, Res Dept Med Informat, Softwarepk 32a, A-4232 Hagenberg, Austria
[2] Univ Hosp Bonn, Dept Neuroradiol, Venusberg Campus 1, D-53127 Bonn, Germany
关键词
Denoising Diffusion Probabilistic Models; Medical Image Segmentation; Few Shot Semantic Segmentation;
D O I
10.1007/978-3-031-34111-3_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning can be a promising approach in expediting the process of annotating medical images. In this paper, we use diffusion models to learn visual representations from multi-modal medical images in an unsupervised setting. These learned representations are then employed for the challenging downstream task of brain tumor segmentation. To avoid feature selection when using pixel-level classifiers, we propose fine-tuning the noise predictor network for semantic segmentation. We compare these methods against a supervised baseline over a varying number of training samples and evaluate their performance on a substantially larger test set. Our results show that, with less than 20 training samples, all methods outperform the supervised baseline across all tumor regions. Additionally, we present a practical use-case for patient-level tumor segmentation using limited supervision. The code we used and our trained diffusion model are publicly available (https://github.com/risc-mi/braintumor-ddpm).
引用
收藏
页码:314 / 325
页数:12
相关论文
共 50 条
  • [1] PARASITIC GAN FOR SEMI-SUPERVISED BRAIN TUMOR SEGMENTATION
    Sun, Yi
    Zhou, Chengfeng
    Fu, Yanwei
    Xue, Xiangyang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1535 - 1539
  • [2] Robust semi-supervised segmentation with timestep ensembling diffusion models
    Rosnati, Margherita
    Roschewitz, Melanie
    Glocker, Ben
    [J]. MACHINE LEARNING FOR HEALTH, ML4H, VOL 225, 2023, 225 : 512 - 527
  • [3] Semi-supervised multiple evidence fusion for brain tumor segmentation
    Huang, Ling
    Ruan, Su
    Denoeux, Thierry
    [J]. NEUROCOMPUTING, 2023, 535 : 40 - 52
  • [4] Brain image segmentation using semi-supervised clustering
    Saha, Sriparna
    Alok, Abhay Kumar
    Ekbal, Asif
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 52 : 50 - 63
  • [5] MULTIVALUED LABEL DIFFUSION FOR SEMI-SUPERVISED SEGMENTATION
    Buyssens, Pierre
    Lezoray, Olivier
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3275 - 3279
  • [6] Tumor volume measurements using supervised and semi-supervised MRI segmentation methods
    Vaidyanathan, M.
    Velthuizen, R.P.
    Venugopal, P.
    Clarke, L.P.
    Hall, L.O.
    [J]. Artificial Neural Networks in Engineering - Proceedings (ANNIE'94), 1994, 4 : 629 - 637
  • [7] A semi-supervised MAP segmentation of brain tissues
    Li, WQ
    deSilver, C
    Attikiouzel, YA
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 757 - 760
  • [8] BELIEF FUNCTION-BASED SEMI-SUPERVISED LEARNING FOR BRAIN TUMOR SEGMENTATION
    Huang, Ling
    Ruan, Su
    Denaeux, Thierry
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 160 - 164
  • [9] Patient-Specific Semi-supervised Learning for Postoperative Brain Tumor Segmentation
    Meier, Raphael
    Bauer, Stefan
    Slotboom, Johannes
    Wiest, Roland
    Reyes, Mauricio
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 714 - +
  • [10] Semi-Supervised Video Segmentation using Tree Structured Graphical Models
    Budvytis, Ignas
    Badrinarayanan, Vijay
    Cipolla, Roberto
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,