GENEVIC: GENetic data Exploration and Visualization via Intelligent interactive Console

被引:1
|
作者
Nath, Anindita [1 ]
Mwesigwa, Savannah [1 ]
Dai, Yulin [1 ]
Jiang, Xiaoqian [2 ]
Zhao, Zhongming [1 ,3 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, McWilliams Sch Biomed Informat, 7000 Fannin St Suite 600, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, McWilliams Sch Biomed Informat, Dept Hlth Data Sci & Artificial Intelligence, Houston, TX 77030 USA
[3] UTHlth Grad Sch Biomed Sci, MD Anderson Canc Ctr, Houston, TX 77030 USA
关键词
D O I
10.1093/bioinformatics/btae500
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The vast generation of genetic data poses a significant challenge in efficiently uncovering valuable knowledge. Introducing GENEVIC, an AI-driven chat framework that tackles this challenge by bridging the gap between genetic data generation and biomedical knowledge discovery. Leveraging generative AI, notably ChatGPT, it serves as a biologist's "copilot." It automates the analysis, retrieval, and visualization of customized domain-specific genetic information, and integrates functionalities to generate protein interaction networks, enrich gene sets, and search scientific literature from PubMed, Google Scholar, and arXiv, making it a comprehensive tool for biomedical research. In its pilot phase, GENEVIC is assessed using a curated database that ranks genetic variants associated with Alzheimer's disease, schizophrenia, and cognition, based on their effect weights from the Polygenic Score (PGS) Catalog, thus enabling researchers to prioritize genetic variants in complex diseases. GENEVIC's operation is user-friendly, accessible without any specialized training, secured by Azure OpenAI's HIPAA-compliant infrastructure, and evaluated for its efficacy through real-time query testing. As a prototype, GENEVIC is set to advance genetic research, enabling informed biomedical decisions.Availability and implementation GENEVIC is publicly accessible at https://genevicanath2024.streamlit.app. The underlying code is open-source and available via GitHub at https://github.com/bsml320/GENEVIC.git (also at https://github.com/anath2110/GENEVIC.git).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Preface: Intelligent interactive data visualization
    Barbara Hammer
    Daniel Keim
    Neil Lawrence
    Guy Lebanon
    Data Mining and Knowledge Discovery, 2013, 27 : 1 - 3
  • [2] Preface: Intelligent interactive data visualization
    Hammer, Barbara
    Keim, Daniel
    Lawrence, Neil
    Lebanon, Guy
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 1 - 3
  • [3] Distributed, intelligent, interactive visualization and exploration of time-oriented clinical data and their abstractions
    Shahar, Yuval
    Goren-Bar, Dina
    Boaz, David
    Tahan, Gil
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2006, 38 (02) : 115 - 135
  • [4] Exploration of Climate Data Using Interactive Visualization
    Ladstaedter, Florian
    Steiner, Andrea K.
    Lackner, Bettina C.
    Pirscher, Barbara
    Kirchengast, Gottfried
    Kehrer, Johannes
    Hauser, Helwig
    Muigg, Philipp
    Doleisch, Helmut
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (04) : 667 - 679
  • [5] An Intelligent Visual Big Data Analytics Framework for Supporting Interactive Exploration and Visualization of Big OLAP Cubes
    Ordonez, Carlos
    Chen, Zhibo
    Cuzzocrea, Alfredo
    Garcia-Garcia, Javier
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 421 - 427
  • [6] An Interactive Visualization System for Streaming Data Online Exploration
    Liang, Fengzhou
    Liu, Fang
    Zhou, Tongqing
    Wang, Yunhai
    Chen, Li
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2022, 2023, 492 : 515 - 534
  • [7] IRIS: Intelligent visualization for data exploration support in GIS
    Andrienko, GL
    Andrienko, NV
    WSCG '98, VOL 1: SIXTH INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS AND VISUALIZATION '98, 1998, : 19 - 26
  • [8] Vispedia: On-demand Data Integration for Interactive Visualization and Exploration
    Chan, Bryan
    Talbot, Justin
    Wu, Leslie
    Sakunkoo, Nathan
    Cammarano, Mike
    Hanrahan, Pat
    ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 1139 - 1141
  • [9] MODE: A Web Application for Interactive Visualization and Exploration of Omics Data
    Degnan, David J.
    Claborne, Daniel M.
    Richardson, Rachel E.
    Strauch, Clayton W.
    Glasscock, Evan C.
    Velickovic, Dusan
    Burnum-Johnson, Kristin E.
    Webb-Robertson, Bobbie-Jo M.
    Stratton, Kelly G.
    Bramer, Lisa M.
    JOURNAL OF PROTEOME RESEARCH, 2025, 24 (02) : 911 - 918
  • [10] ARViz: Interactive Visualization of Association Rules for RDF Data Exploration
    Menin, Aline
    Cadorel, Lucie
    Tettamanzi, Andrea
    Giboin, Alain
    Gandon, Fabien
    Winckler, Marco
    2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 13 - 20