Multiscale Semidefinite Programming Approach to Positioning Problems with Pairwise Structure

被引:0
|
作者
Chen, Yian [1 ]
Khoo, Yuehaw [1 ]
Lindsey, Michael [2 ]
机构
[1] Univ Chicago, Dept Stat, 5801 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Convex relaxation; Semidefinite programming; Multiscale; Global optimization; SENSOR NETWORK LOCALIZATION; GLOBAL OPTIMIZATION; CLUSTERS; DISTANCE; FRAGMENTATION;
D O I
10.1007/s10915-024-02676-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the optimization of pairwise objective functions, i.e., objective functions of the form H(x)=H(x1,& mldr;,xN)=& sum;1 <= i<j <= NHij(xi,xj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\textbf{x}) = H(x_1,\ldots ,x_N) = \sum _{1\le i<j \le N} H_{ij}(x_i,x_j)$$\end{document} for xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_i$$\end{document} in some continuous state spaces Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}_i$$\end{document}. Global optimization in this setting is generally confounded by the possible existence of spurious local minima and the impossibility of global search due to the curse of dimensionality. In this paper, we approach such problems via convex relaxation of the marginal polytope considered in graphical modeling, proceeding in a multiscale fashion which exploits the smoothness of the cost function. We show theoretically that, compared with existing methods, such an approach is advantageous even in simple settings for sensor network localization (SNL). We successfully apply our method to SNL problems, particularly difficult instances with high noise. We also validate performance on the optimization of the Lennard-Jones potential, which is plagued by the existence of many near-optimal configurations. We demonstrate that the proposed algorithm allows us to effectively explore these configurations.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] A semidefinite programming approach to side chain positioning with new rounding strategies
    Chazelle, B
    Kingsford, C
    Singh, M
    INFORMS JOURNAL ON COMPUTING, 2004, 16 (04) : 380 - 392
  • [2] A semidefinite programming approach for solving fractional optimal control problems
    Dehghan, R.
    Keyanpour, M.
    OPTIMIZATION, 2017, 66 (07) : 1157 - 1176
  • [3] A semidefinite programming approach for polynomial switched optimal control problems
    Davoudi, Ramtin
    Hosseini, Seyed Mohammad
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (04): : 626 - 646
  • [4] A semidefinite programming approach for stochastic switched optimal control problems
    Davoudi, Ramtin
    Hosseini, Seyed Mohammad
    Ramezani, Amin
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 2503 - 2508
  • [5] An Efficient Approach to Solve the Large-Scale Semidefinite Programming Problems
    Zheng, Yongbin
    Yan, Yuzhuang
    Liu, Sheng
    Huang, Xinsheng
    Xu, Wanying
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [6] An Asymptotically Exact Approach to Robust Semidefinite Programming Problems with Function Variables
    Oishi, Yasuaki
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (05) : 1000 - 1006
  • [7] Semidefinite programming relaxations for semialgebraic problems
    Pablo A. Parrilo
    Mathematical Programming, 2003, 96 : 293 - 320
  • [8] Semidefinite programming relaxations for semialgebraic problems
    Parrilo, PA
    MATHEMATICAL PROGRAMMING, 2003, 96 (02) : 293 - 320
  • [9] A Generator of Nonregular Semidefinite Programming Problems
    Macedo, Eloisa
    Tchemisova, Tatiana
    OPERATIONAL RESEARCH, 2018, 223 : 177 - 199
  • [10] A Random Algorithm for Semidefinite Programming Problems
    Yuan, Jianjun
    Lamperski, Andrew
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1382 - 1387