A Primer on Deep Learning for Causal Inference

被引:0
|
作者
Koch, Bernard J. [1 ,2 ]
Sainburg, Tim [3 ]
Geraldo Bastias, Pablo [4 ]
Jiang, Song [5 ]
Sun, Yizhou [5 ]
Foster, Jacob G. [6 ,7 ,8 ,9 ]
机构
[1] Northwestern Kellogg Sch Management, Ctr Sci Sci & Innovat, Evanston, IL USA
[2] Univ Chicago, Dept Sociol, Chicago, IL USA
[3] Harvard Med Sch, Dept Neurol, Boston, MA USA
[4] Univ Oxford, Nuffield Coll, Oxford, England
[5] UCLA, Dept Comp Sci, Los Angeles, CA USA
[6] Indiana Univ Bloomington, Cognit Sci Program, Bloomington, IA USA
[7] Indiana Univ, Luddy Sch Informat Comp & Engn, Dept Informat, Bloomington, IN USA
[8] UCLA, Dept Sociol, Los Angeles, CA USA
[9] Santa Fe Inst, Santa Fe, NM USA
关键词
PROPENSITY SCORE; NEURAL-NETWORKS; MORTALITY;
D O I
10.1177/00491241241234866
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to extend causal inference to settings where confounding is nonlinear, time-varying, or encoded in text, networks, and images. To maximize accessibility, we also introduce prerequisite concepts from causal inference and deep learning. The primer differs from other treatments of deep learning and causal inference in its sharp focus on observational causal estimation, its extended exposition of key algorithms, and its detailed tutorials for implementing, training, and selecting among deep estimators in TensorFlow 2 and PyTorch.
引用
收藏
页数:51
相关论文
共 50 条
  • [1] Causal Inference in Statistics: A Primer
    Markus, Keith A.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2017, 24 (04) : 636 - 642
  • [2] Causal Inference in Statistics: a Primer
    Hutchison, Dougal
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (03) : 1325 - 1326
  • [3] Causal Inference in Statistics: A Primer
    Tsodikov, Alexander
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (01) : 256 - 258
  • [4] When causal inference meets deep learning
    Luo, Yunan
    Peng, Jian
    Ma, Jianzhu
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (08) : 426 - 427
  • [5] When causal inference meets deep learning
    Yunan Luo
    Jian Peng
    Jianzhu Ma
    [J]. Nature Machine Intelligence, 2020, 2 : 426 - 427
  • [6] Causal inference in Al education: A primer
    Forney, Andrew
    Mueller, Scott
    [J]. JOURNAL OF CAUSAL INFERENCE, 2022, 10 (01) : 141 - 173
  • [7] Evaluating Uses of Deep Learning Methods for Causal Inference
    Whata, Albert
    Chimedza, Charles
    [J]. IEEE ACCESS, 2022, 10 : 2813 - 2827
  • [8] Causal Inference Meets Deep Learning: A Comprehensive Survey
    Jiao, Licheng
    Wang, Yuhan
    Liu, Xu
    Li, Lingling
    Liu, Fang
    Ma, Wenping
    Guo, Yuwei
    Chen, Puhua
    Yang, Shuyuan
    Hou, Biao
    [J]. RESEARCH, 2024, 7
  • [9] Big Data, Data Science, and Causal Inference: A Primer for Clinicians
    Raita, Yoshihiko
    Camargo, Carlos A.
    Liang, Liming
    Hasegawa, Kohei
    [J]. FRONTIERS IN MEDICINE, 2021, 8
  • [10] Implicit institutional incentives and individual decisions: Causal inference with deep learning models
    Cabras, Stefano
    Tena, J. D.
    [J]. MANAGERIAL AND DECISION ECONOMICS, 2023, 44 (06) : 3739 - 3754