Deep learning models for multi-step prediction of water levels incorporating meteorological variables and historical data

被引:0
|
作者
Chen, Lingxuan [1 ]
Wang, Zhaocai [2 ]
Jiang, Ziang [3 ]
Lin, Xiaolong [4 ]
机构
[1] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Guangdong, Peoples R China
[2] Shanghai Ocean Univ, Coll Informat, Hucheng Huan Rd 999, Shanghai 201306, Peoples R China
[3] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai 201306, Peoples R China
[4] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
关键词
Groundwater level prediction; Long and short-term memory; Spring water level; Whale optimization algorithm; Variational modal decomposition;
D O I
10.1007/s00477-024-02766-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Precise multi-step water level predictions are crucial for managing water resources and mitigating the effects of extreme weather. This study introduces a novel approach by integrating Variational Mode Decomposition (VMD), Whale Optimization Algorithm (WOA), and Long Short-Term Memory (LSTM) to forecast variations in water levels, employing both endogenous and exogenous environmental variables. Furthermore, this research proposes two additional fusion algorithms, each possessing unique potential for enhancement: Multivariate Long Short-Term Memory (MLSTM) and an advancement in the Residual Sequence (RESID). The predictive accuracy of these diverse algorithms is assessed using data from the water levels in Jinan Baotu Spring, China. The findings indicate that the VMD-WOA-LSTM model presents the most robust results for both long-term and short-term predictions. For multi-step, ultra-short-term forecasts, VMD-WOA-MLSTM proves to be a pragmatic algorithm. However, the refined algorithm that incorporates RESID does not significantly improve and, indeed, may diminish prediction accuracy. Conclusively, the VMD-WOA-LSTM, exemplifying a data-driven predictive algorithm, boasts high accuracy and demonstrates versatility in water level forecasting across various scenarios.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [1] Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction
    Chandra, Rohitash
    Goyal, Shaurya
    Gupta, Rishabh
    IEEE ACCESS, 2021, 9 : 83105 - 83123
  • [2] Multi-step Ahead Urban Water Demand Forecasting Using Deep Learning Models
    Sahoo B.B.
    Panigrahi B.
    Nanda T.
    Tiwari M.K.
    Sankalp S.
    SN Computer Science, 4 (6)
  • [3] Learning multi-step prediction models for receding horizon control
    Terzi, Enrico
    Fagiano, Lorenzo
    Farina, Marcello
    Scattolini, Riccardo
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1335 - 1340
  • [4] Deep Learning for Multi-Step Performance Prediction in Operational Optical Networks
    Mezni, Ameni
    Charlton, Douglas W.
    Tremblay, Christine
    Desrosiers, Christian
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [5] Data-driven multi-step prediction and analysis of monthly rainfall using explainable deep learning
    He, Renfei
    Zhang, Limao
    Chew, Alvin Wei Ze
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [6] Comparing multi-step ahead building cooling load prediction using shallow machine learning and deep learning models
    Chalapathy, Raghavendra
    Khoa, Nguyen Lu Dang
    Sethuvenkatraman, Subbu
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2021, 28
  • [7] Ocean-Mixer: A Deep Learning Approach for Multi-Step Prediction of Ocean Remote Sensing Data
    Wang, Sai
    Fu, Guoping
    Song, Yongduo
    Wen, Jing
    Guo, Tuanqi
    Zhang, Hongjin
    Wang, Tuantuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (03)
  • [8] Enhancing a Multi-Step Discharge Prediction with Deep Learning and a Response Time Parameter
    Thaisiam, Wandee
    Saelo, Warintra
    Wongchaisuwat, Papis
    WATER, 2022, 14 (18)
  • [9] A novel multi-step forecasting strategy for enhancing deep learning models’ performance
    Ioannis E. Livieris
    Panagiotis Pintelas
    Neural Computing and Applications, 2022, 34 : 19453 - 19470
  • [10] A novel multi-step forecasting strategy for enhancing deep learning models' performance
    Livieris, Ioannis E.
    Pintelas, Panagiotis
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 19453 - 19470