Machine learning and natural language processing in clinical trial eligibility criteria parsing: a scoping review

被引:0
|
作者
Kantor, Klaudia [1 ,2 ]
Morzy, Mikolaj [2 ,3 ]
机构
[1] Roche Informat, Warsaw, Poland
[2] Poznan Univ Tech, Fac Comp & Telecommun, Poznan, Poland
[3] Poznan Univ Tech, Poznan, Poland
关键词
eligibility criteria; clinical trials; natural; Introduction;
D O I
10.1016/j.drudis.2024.104139
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Automatic eligibility criteria parsing in clinical trials is crucial for cohort recruitment leading to data validity and trial completion. Recent years have witnessed an explosion of powerful machine learning (ML) and natural language processing (NLP) models that can streamline the patient accrual process. In this PRISMAbased scoping review, we comprehensively evaluate existing literature on the application of ML/NLP models for parsing clinical trial eligibility criteria. The review covers 9160 papers published between 2000 and 2024, with 88 publications subjected to data charting along 17 dimensions. Our review indicates insufficient use of state-of-the-art artificial intelligence
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] A scoping review of ethics considerations in clinical natural language processing
    Walk, Oliver J. Bear Don't
    Nieva, Harry Reyes
    Lee, Sandra Soo-Jin
    Elhadad, Noemie
    [J]. JAMIA OPEN, 2022, 5 (02)
  • [2] A scoping review of publicly available language tasks in clinical natural language processing
    Gao, Yanjun
    Dligach, Dmitriy
    Christensen, Leslie
    Tesch, Samuel
    Laffin, Ryan
    Xu, Dongfang
    Miller, Timothy
    Uzuner, Ozlem
    Churpek, Matthew M.
    Afshar, Majid
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (10) : 1797 - 1806
  • [3] A systematic review on natural language processing systems for eligibility prescreening in clinical research
    Idnay, Betina
    Dreisbach, Caitlin
    Weng, Chunhua
    Schnall, Rebecca
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 29 (01) : 197 - 206
  • [4] Natural language processing in pathology: a scoping review
    Burger, Gerard
    Abu-Hanna, Ameen
    de Keizer, Nicolette
    Cornet, Ronald
    [J]. JOURNAL OF CLINICAL PATHOLOGY, 2016, 69 (11) : 949 - 955
  • [5] Transformer-Based Named Entity Recognition for Parsing Clinical Trial Eligibility Criteria
    Tian, Shubo
    Erdengasileng, Arslan
    Yang, Xi
    Guo, Yi
    Wu, Yonghui
    Zhang, Jinfeng
    Bian, Jiang
    He, Zhe
    [J]. 12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [6] Machine translation of standardised medical terminology using natural language processing: A scoping review
    Noll, Richard
    Frischen, Lena S.
    Boeker, Martin
    Storf, Holger
    Schaaf, Jannik
    [J]. NEW BIOTECHNOLOGY, 2023, 77 : 120 - 129
  • [7] Deep learning in clinical natural language processing: a methodical review
    Wu, Stephen
    Roberts, Kirk
    Datta, Surabhi
    Du, Jingcheng
    Ji, Zongcheng
    Si, Yuqi
    Soni, Sarvesh
    Wang, Qiong
    Wei, Qiang
    Xiang, Yang
    Zhao, Bo
    Xu, Hua
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (03) : 457 - 470
  • [8] Machine Learning Techniques for Biomedical Natural Language Processing: A Comprehensive Review
    Houssein, Essam H.
    Mohamed, Rehab E.
    Ali, Abdelmgeid A.
    [J]. IEEE ACCESS, 2021, 9 : 140628 - 140653
  • [9] Machine Learning and Natural Language Processing in Mental Health: Systematic Review
    Le Glaz, Aziliz
    Haralambous, Yannis
    Kim-Dufor, Deok-Hee
    Lenca, Philippe
    Billot, Romain
    Ryan, Taylor C.
    Marsh, Jonathan
    DeVylder, Jordan
    Walter, Michel
    Berrouiguet, Sofian
    Lemey, Christophe
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (05)
  • [10] Distributed peer review enhanced with natural language processing and machine learning
    Kerzendorf, Wolfgang E.
    Patat, Ferdinando
    Bordelon, Dominic
    van de Ven, Glenn
    Pritchard, Tyler A.
    [J]. NATURE ASTRONOMY, 2020, 4 (07) : 711 - 717