Feedback linear quadratic Nash equilibrium for discrete-time Markov jump linear systems

被引:0
|
作者
Costa, Oswaldo L. V. [1 ]
de Oliveira, Andre M. [2 ]
机构
[1] Escola Politecn Univ Sao Paulo, Dept Engn Telecomunicacoes & Controle, BR-05508010 Sao Paulo, Brazil
[2] Univ Fed Sao Paulo, Inst Ciencia & Tecnol, BR-12247014 Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Feedback LQ Nash equilibrium; Discrete-time Markov jump linear systems; Coupled algebraic Riccati-like equations; Mean square stability; OPEN-LOOP NASH; GAMES;
D O I
10.1016/j.sysconle.2024.105893
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the infinite horizon feedback LQ Nash equilibrium for discrete-time Markov jump linear systems (MJLS), which are linear systems subject to random variations that follow a Markov chain. We present necessary and sufficient conditions based on a set of coupled algebraic Riccati-like equations for the existence of a feedback LQ Nash equilibrium. To guarantee that the solution of these coupled equations are mean square stabilizing solutions some conditions written in terms of the observability/ detectability of the system modes are presented. The paper concludes with an illustrative example in the context of failure-prone robotic systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Linear Quadratic Optimal Control for Discrete-time Markov Jump Linear Systems
    Han, Chunyan
    Li, Hongdan
    Wang, Wei
    Zhang, Huanshui
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 769 - 774
  • [2] The linear quadratic optimal control problem for discrete-time Markov jump linear singular systems
    Chavez-Fuentes, Jorge R.
    Costa, Eduardo F.
    Terra, Marco H.
    Rocha, Kaio D. T.
    [J]. AUTOMATICA, 2021, 127
  • [3] Weak detectability and the linear-quadratic control problem of discrete-time Markov jump linear systems
    Costa, EF
    Do Val, JBR
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (16-17) : 1282 - 1292
  • [4] Uncoupled Riccati iterations for the linear quadratic control problem of discrete-time Markov jump linear systems
    do Val, JBR
    Geromel, JC
    Costa, OLV
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (12) : 1727 - 1733
  • [5] Constrained quadratic state feedback control of discrete-time Markovian jump linear systems
    Costa, OLV
    Assumpcao, EO
    Boukas, EK
    Marques, RP
    [J]. AUTOMATICA, 1999, 35 (04) : 617 - 626
  • [6] Repetitive Control of Discrete-Time Markov Jump Linear Systems
    Ma, Guoqi
    Liu, Xinghua
    Pagilla, Prabhakar R.
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4546 - 4551
  • [7] FIR Filtering for Discrete-Time Markov Jump Linear Systems
    Wen, Ji-Wei
    Liu, Fei
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2011, 30 (06) : 1149 - 1164
  • [8] Linear Estimation for Discrete-time Systems with Markov Jump Delays
    Han, Chunyan
    Zhang, Huanshui
    Fu, Minyue
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 981 - 987
  • [9] Linear Estimation for Discrete-time Systems with Markov Jump Delays
    Han Chunyan
    Zhang Huanshui
    [J]. PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 100 - 104
  • [10] On the detectability and observability of discrete-time Markov jump linear systems
    Costa, EF
    do Val, JBR
    [J]. SYSTEMS & CONTROL LETTERS, 2001, 44 (02) : 135 - 145