Dynamical friction in the quasi-linear formulation of modified Newtonian dynamics (QuMOND)

被引:0
|
作者
Di Cintio, Pierfrancesco [1 ,2 ,3 ,4 ]
Re, Federico [5 ,6 ]
Chiari, Caterina [7 ,8 ]
机构
[1] CNR ISC, via Madonna Piano 17, I-50022 Sesto Fiorentino, Italy
[2] INAF Osservatorio Astrofisico Arcetri, Largo Enr Fermi 5, I-50125 Florence, Italy
[3] Univ Firenze, Dipartimento Fis & Astron, Via Sansone 1, I-50019 Sesto Fiorentino, Italy
[4] Sez Firenze, INFN, Via Sansone 1, I-50022 Sesto Fiorentino, Italy
[5] Univ Milano Bicocca, Dipartimento Fis Giuseppe Occhialini, Piazza Sci 3, I-20126 Milan, Italy
[6] Sez Milano, INFN, Via Celoria 15, I-20133 Milan, Italy
[7] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matematiche, Via Campi 213-A, I-41125 Modena, Italy
[8] CNR NANO, Via Campi 213-A, I-41125 Modena, Italy
关键词
gravitation; methods: analytical; stars: kinematics and dynamics; galaxies: kinematics and dynamics; GLOBULAR-CLUSTERS; STELLAR-SYSTEMS; SPIRAL GALAXIES; STAR-CLUSTERS; RELAXATION; ACCELERATION; STABILITY; BREAKDOWN; BINARIES; GRAVITY;
D O I
10.1051/0004-6361/202450548
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We explore the dynamical friction on a test mass in gravitational systems in the quasi-linear formulation of modified Newtonian dynamics (QuMOND). Methods. Exploiting the quasi-linearity of QuMOND, we derived a simple expression for the dynamical friction in akin to its Newtonian counterpart in the standard Chandrasekhar derivation. Moreover, adopting a mean field approach based on the Liouville equation, we were able to obtain a more rigorous (albeit in integral form) dynamical friction formula that can be evaluated numerically for a given choice of the QuMOND interpolation function. Results. We find that our results are consistent with those of previous works. We observe that the dynamical friction is stronger in MOND with respect to a baryon-only Newtonian system with the same mass distribution. This amounts to a correction of the Coulomb logarithmic factor via additional terms that are proportional to the MOND radius of the system. Moreover, with the aid of simple numerical experiments, we confirm our theoretical predictions and those of previous works based on MOND.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Dynamical friction in modified Newtonian dynamics
    Nipoti, Carlo
    Ciotti, Luca
    Binney, James
    Londrillo, Pasquale
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (04) : 2194 - 2198
  • [2] Quasi-linear formulation of MOND
    Milgrom, Mordehai
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 403 (02) : 886 - 895
  • [3] Testing quasi-linear modified Newtonian dynamics theory with Galactic globular clusters in a weak external field
    Sollima, A.
    Nipoti, C.
    Calura, F.
    Pascale, R.
    Baumgardt, H.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (04) : 5291 - 5308
  • [4] DYNAMICS OF THE QUASI-LINEAR MOLECULE
    THORSON, WR
    NAKAGAWA, I
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1960, 33 (04): : 994 - 1004
  • [5] APPLICABILITY OF QUASI-LINEAR THEORY FOR DYNAMICAL PLASMAS
    BLOOMBERG, HW
    [J]. PHYSICS LETTERS A, 1971, A 37 (01) : 53 - +
  • [6] Quasi-linear dynamics of Weibel instability
    Pokhotelov, O. A.
    Amariutei, O. A.
    [J]. ANNALES GEOPHYSICAE, 2011, 29 (11) : 1997 - 2001
  • [7] A modified formulation of quasi-linear viscoelasticity for transversely isotropic materials under finite deformation
    Balbi, Valentina
    Shearer, Tom
    Parnell, William J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2217):
  • [8] Quasi-linear one-frequency dynamics of the discrete friction mechanical system with delay
    Zhirnov, B.M.
    [J]. Prikladnaya Mekhanika, 2002, 38 (06): : 127 - 134
  • [9] Solar particle transport in a dynamical quasi-linear theory
    Dröge, W
    [J]. ASTROPHYSICAL JOURNAL, 2003, 589 (02): : 1027 - 1039
  • [10] Control of quasi-linear dynamical systems with two degrees of freedom
    Volkov, SV
    [J]. DOKLADY PHYSICS, 2002, 47 (05) : 373 - 376