Evaluation and prediction of slag-based geopolymer's compressive strength using design of experiment (DOE) approach and artificial neural network (ANN) algorithms
被引:0
|
作者:
Al-Sughayer, Rami
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
Univ Mississippi, Dept Civil Engn, University, MS 38677 USAUniv Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
Al-Sughayer, Rami
[1
,2
]
Alkhateb, Hunain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Dept Civil Engn, University, MS 38677 USAUniv Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
Alkhateb, Hunain
[2
]
Yasarer, Hakan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Dept Civil Engn, University, MS 38677 USAUniv Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
Yasarer, Hakan
[2
]
Najjar, Yacoub
论文数: 0引用数: 0
h-index: 0
机构:
Univ Mississippi, Dept Civil Engn, University, MS 38677 USAUniv Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
Najjar, Yacoub
[2
]
论文数: 引用数:
h-index:
机构:
Al-Ostaz, Ahmed
[1
,2
]
机构:
[1] Univ Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
[2] Univ Mississippi, Dept Civil Engn, University, MS 38677 USA
Even though the demand for utilizing geopolymers is growing, the need for current standard guidelines to regulate compliance to address the complexity of the mix design could be one of the major hurdles of utilizing geopolymers vastly in construction. There is no straightforward standard that addresses the complexity of the mix design of geopolymers. Thus, this work addresses main factors affecting the compressive strength of slag based geopolymers and provide a tool for predicting it. This article includes experimental work to evaluate the properties of slag-based geopolymer binders and the development of a model using Artificial Neural Network (ANN) algorithms for predicting the performance of these slag-based geopolymer binders. In this paper, we have utilized and developed ANN models for optimizing slag-based geopolymer mixes based on precursor materials' physiochemical properties and activation solutions constituents that can enhance performance compressive strength prediction in construction applications.
机构:
Department of Civil Engineering, Bingol University, Bingol, TurkeyDepartment of Civil Engineering, Bingol University, Bingol, Turkey
Yadollahi, M.M.
Benli, A.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Civil Engineering, Bingol University, Bingol, TurkeyDepartment of Civil Engineering, Bingol University, Bingol, Turkey
Benli, A.
Demirboʇa, R.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Civil Engineering, Atatürk University, Erzurum,25240, Turkey
Engineering Faculty, Civil Engineering Department, King Abdulaziz University, Jeddah, Saudi ArabiaDepartment of Civil Engineering, Bingol University, Bingol, Turkey
机构:
Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
Changan Univ, Minist Educ, Engn Res Cent Pavement Mat, Xian 710061, Peoples R ChinaChangan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
Bai, Min
Zhang, Zhe
论文数: 0引用数: 0
h-index: 0
机构:
Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R ChinaChangan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
Zhang, Zhe
Cao, Kaiyue
论文数: 0引用数: 0
h-index: 0
机构:
Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R ChinaChangan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
Cao, Kaiyue
Li, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
Changan Univ, Minist Educ, Engn Res Cent Pavement Mat, Xian 710061, Peoples R ChinaChangan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
Li, Hui
He, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Mat Sci & Engn, Xian 710049, Peoples R ChinaChangan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
机构:
LADS Laboratory, University of Bologna, Via dell’Università 50, Cesena,47521, ItalyLADS Laboratory, University of Bologna, Via dell’Università 50, Cesena,47521, Italy
Bonagura, Mario
论文数: 引用数:
h-index:
机构:
Nobile, Lucio
SDHM Structural Durability and Health Monitoring,
2021,
15
(02):
: 125
-
137