CBANA: A Lightweight, Efficient, and Flexible <underline>C</underline>ache <underline>B</underline>ehavior <underline>Ana</underline>lysis Framework

被引:0
|
作者
Hu, Qilin [1 ,2 ]
Ding, Yan [1 ,2 ]
Liu, Chubo [1 ,2 ]
Li, Keqin [1 ,2 ,3 ]
Li, Kenli [1 ,2 ]
Zomaya, Albert Y. [4 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[2] Natl Supercomp Ctr Changsha, Changsha 410082, Hunan, Peoples R China
[3] SUNY Coll New Paltz, Dept Comp Sci, New Paltz, NY 12561 USA
[4] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Static analysis; Hardware; Accuracy; Performance analysis; Explosions; Analytical models; Data models; Cache behavior modeling; path analysis; path selection; static analysis;
D O I
10.1109/TC.2024.3416747
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cache miss analysis has become one of the most important things to improve the execution performance of a program. Generally, the approaches for analyzing cache misses can be categorized into dynamic analysis and static analysis. The former collects sampling statistics during program execution but is limited to specialized hardware support and incurs expensive execution overhead. The latter avoids the limitations but faces two challenges: inaccurate execution path prediction and inefficient analysis resulted by the explosion of the program state graph. To overcome these challenges, we propose CBANA, an LLVM- and process address space-based lightweight, efficient, and flexible cache behavior analysis framework. CBANA significantly improves the prediction accuracy of the execution path with awareness of inputs. To improve analysis efficiency and utilize the program preprocessing, CBANA refactors loop structures to reduce search space and dynamically splices intermediate results to reduce unnecessary or redundant computations. CBANA also supports configurable hardware parameter settings, and decouples the module of cache replacement policy from other modules. Thus, its flexibility is established. We evaluate CBANA by using the popular open benchmark PolyBench, graph workloads, and our synthetic workloads with good and poor data locality. Compared with the popular dynamic cache analysis tools Perf and Valgrind, the cache miss gap is less than 3.79% and 2.74% respectively with over ten thousand data accesses for the synthetic workloads, and the time reduction is up to 92.38% and 97.51% for the multiple-path workloads. Compared with the popular static cache analysis tool Heptane, CBANA achieves a time reduction of 97.71% while ensuring accuracy at the same time.
引用
收藏
页码:2262 / 2274
页数:13
相关论文
共 50 条
  • [1] MAR: <underline>M</underline>asked Autoencoders for Efficient <underline>A</underline>ction <underline>R</underline>ecognition
    Qing, Zhiwu
    Zhang, Shiwei
    Huang, Ziyuan
    Wang, Xiang
    Wang, Yuehuan
    Lv, Yiliang
    Gao, Changxin
    Sang, Nong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 218 - 233
  • [2] LITE-SNN: <underline>L</underline>everaging <underline>I</underline>nherent Dynamics to <underline>T</underline>rain <underline>E</underline>nergy-Efficient <underline>S</underline>piking <underline>N</underline>eural <underline>N</underline>etworks for Sequential Learning
    Rathi, Nitin
    Roy, Kaushik
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (06) : 1905 - 1914
  • [3] AUDIT: Function<underline>a</underline>l Q<underline>u</underline>alification in A<underline>d</underline>ditive Manufacturing Via Physical and Dig<underline>i</underline>tal <underline>T</underline>wins
    Biehler, Michael
    Mock, Reinaldo
    Kode, Shriyanshu
    Mehmood, Maham
    Bhardwaj, Palin
    Shi, Jianjun
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (02):
  • [4] Patient-<underline>Selection</underline> of a Clinical Trial Primary <underline>Outcome</underline>: The ENHANCE-AF <underline>Outcomes</underline> <underline>Survey</underline>
    Stafford, Randall S.
    Rice, Eli N.
    Shah, Rushil
    Hills, Mellanie T.
    Nunes, Julio C.
    Desutter, Katie
    Lin, Amy
    Lhamo, Karma
    Lin, Bryant
    Lu, Ying
    Wang, Paul J.
    PLOS ONE, 2025, 20 (03):
  • [5] SIMPNet: <underline>S</underline>patial-<underline>I</underline>nformed <underline>M</underline>otion <underline>P</underline>lanning <underline>Net</underline>work
    Soleymanzadeh, Davood
    Liang, Xiao
    Zheng, Minghui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2870 - 2877
  • [6] ViTeGNN: Towards <underline>V</underline>ersatile <underline>I</underline>nference of <underline>Te</underline>mporal <underline>G</underline>raph <underline>N</underline>eural <underline>N</underline>etworks on FPGA
    Zhou, Hongkuan
    Zhang, Bingyi
    Kannan, Rajgopal
    Busart, Carl
    Prasanna, Viktor K.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (03) : 502 - 519
  • [7] dbAPIS: a database of <underline>a</underline>nti-<underline>p</underline>rokaryotic <underline>i</underline>mmune <underline>s</underline>ystem genes
    Yan, Yuchen
    Zheng, Jinfang
    Zhang, Xinpeng
    Yin, Yanbin
    NUCLEIC ACIDS RESEARCH, 2023, 52 (D1) : D419 - D425
  • [8] HGNAS: <underline>H</underline>ardware-Aware <underline>G</underline>raph <underline>N</underline>eural <underline>A</underline>rchitecture <underline>S</underline>earch for Edge Devices
    Zhou, Ao
    Yang, Jianlei
    Qi, Yingjie
    Qiao, Tong
    Shi, Yumeng
    Duan, Cenlin
    Zhao, Weisheng
    Hu, Chunming
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (12) : 2693 - 2707
  • [9] UA-MPC: <underline>U</underline>ncertainty-<underline>A</underline>ware <underline>M</underline>odel <underline>P</underline>redictive <underline>C</underline>ontrol for Motorized LiDAR Odometry
    Li, Jianping
    Xu, Xinhang
    Liu, Jinxin
    Cao, Kun
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 3652 - 3659
  • [10] Design and rationale of the <underline>C</underline>OVID vaccine-<underline>a</underline>ssociated <underline>m</underline>yocarditis/ <underline>p</underline>ericarditis (CAMP) study
    Truong, Dongngan T.
    Harty, Brian J.
    Bainton, Jessica
    Baker, Annette
    Bradford, Tamara T.
    Cai, Bing
    Coleman, Julia
    de Luise, Cynthia
    Dionne, Audrey
    Friedman, Kevin
    Gayed, Juleen
    Graham, Emily
    Jone, Pei-Ni
    Lanes, Stephan
    Pearson, Gail D.
    Portman, Michael A.
    Powell, Andrew J.
    Russell, Mark W.
    Sabati, Arash A.
    Taylor, Michael D.
    Wheaton, Olivia
    Newburger, Jane W.
    AMERICAN HEART JOURNAL, 2025, 281 : 32 - 42