A Comprehensive Approach to Wind Power Forecasting Using Advanced Hybrid Neural Networks

被引:0
|
作者
Vishnutheerth, E. P. [1 ]
Vijay, Vivek [1 ]
Satheesh, Rahul [1 ]
Kolhe, Mohan Lal [2 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Artificial Intelligence, Coimbatore 641112, India
[2] Univ Agder, Dept Engn Sci, N-4604 Kristiansand, Norway
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Predictive models; Wind power generation; Long short term memory; Recurrent neural networks; Feature extraction; Discrete wavelet transforms; Data models; BiLSTM; Convolutional neural networks; Deep learning; Bidirectional long short term memory (BiLSTM); bidirectional gated recurrent unit (BiGRU); convolutional neural networks (CNN); Discrete Wavelet Transform (DWT); hybrid deep learning; wind power; PREDICTION; MODEL;
D O I
10.1109/ACCESS.2024.3450096
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wind power prediction is important in successfully integrating renewable energy sources into the grid. This study is focused on a sub-domain of wind power prediction and compares Bidirectional Long Short Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) architectures. Additionally, these models are enhanced by advanced pre-processing techniques, including such methods as Discrete Wavelet Transform (DWT) and Fourier Synchrosqueezed Transform (FSST), as well as hybrid models involving Convolutional Neural Network (CNN) and Random Forest (RF) together with BiLSTM and BiGRU Models. It was found that the hybrid model consisting of CNN and BiGRU performed better than other hybrids by returning an R2 score of 0.9093, RMSE of 0.1095, MSE of 0.0120 and MAE of 0.0466; this shows that our model had a much greater level of accuracy compared to others ones developed before. These model performance indices demonstrated its better trustworthiness and error level for further utilization in wind energy forecast applications required for efficiency improvements and reliability enhancement in wind energy management. The current study emphasizes the usefulness of combining deep learning approaches like BiLSTM and BiGRU for more accurate wind power predictions hence improving reliability and effectiveness in managing wind energy resources.
引用
收藏
页码:124790 / 124800
页数:11
相关论文
共 50 条
  • [1] Wind power forecasting using advanced neural networks models.
    Kariniotakis, GN
    Stavrakakis, GS
    Nogaret, EF
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1996, 11 (04) : 762 - 767
  • [2] Probabilistic Wind Power Forecasting with Hybrid Artificial Neural Networks
    Wan, Can
    Song, Yonghua
    Xu, Zhao
    Yang, Guangya
    Nielsen, Arne Hejde
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2016, 44 (15) : 1656 - 1668
  • [3] Wind Power Forecasting using Emotional Neural Networks
    Lotfi, Ehsan
    Khosravi, Abbas
    Akbarzadeh-T, M-R.
    Nahavandi, Saeid
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 311 - 316
  • [4] Wind Power Forecasting using Hybrid Recurrent Neural Networks with Empirical Mode Decomposition
    van Heerden, Liaan
    Vermeulen, H. J.
    van Staden, Chantelle
    2022 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2022 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2022,
  • [5] A COMPREHENSIVE APPROACH TO BITCOIN FORECASTING USING NEURAL NETWORKS
    Sestanovic, Tea
    EKONOMSKI PREGLED, 2024, 75 (01): : 62 - 85
  • [6] Hybrid fuzzy clustering neural networks to wind power generation forecasting
    Salgado, Paulo
    Afonso, Paulo
    14TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2013, : 359 - 363
  • [7] Using a hybrid approach for wind power forecasting in Northwestern Mexico
    Diaz-Esteban, Yanet
    Lopez-Villalobos, Carlos Alberto
    Moya, Carlos Abraham Ochoa
    Romero-Centeno, Rosario
    Quintanar, Ignacio Arturo
    ATMOSFERA, 2024, 38 : 263 - 288
  • [8] Wind Power Forecasting by Using Artificial Neural Networks and Grubbs Criterion
    Zhao Jianli
    Wu Jiguang
    Bai Geping
    Li Yingjun
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 1786 - 1790
  • [9] Wind power forecasting based on meteorological data using neural networks
    Sayenko, Yuriy
    Pawelek, Ryszard
    Liubartsev, Vadym
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (11): : 207 - 210
  • [10] Wind Speed Forecasting Using a Hybrid Neural-Evolutive Approach
    Flores, Juan J.
    Loaeza, Roberto
    Rodriguez, Hector
    Cadenas, Erasmo
    MICAI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5845 : 600 - +