Forecasting of S&P 500 ESG Index by Using CEEMDAN and LSTM Approach

被引:0
|
作者
Aggarwal, Divya [1 ]
Banerjee, Sougata [2 ]
机构
[1] Management Dev Inst Gurgaon, Finance & Accounting, Gurugram, India
[2] Indian Inst Management Ranchi IIM R, Finance & Accounting, Ranchi, India
关键词
CEEMDAN; ESG; LSTM; market efficiency; stock market prediction; SVM; EMPIRICAL MODE DECOMPOSITION; SOCIALLY RESPONSIBLE INVESTMENT; STOCK-PRICE INDEX; TIME-SERIES; MARKET-EFFICIENCY; PREDICTING STOCK; VOLATILITY; HYPOTHESIS; MEMORY;
D O I
10.1002/for.3201
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study aims to forecast the S&P 500 ESG index using the mixture model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and long short-term memory (LSTM) prediction models. CEEMDAN enables decomposing the index's original return series into different intrinsic mode functions (IMFs) and a residual series. The decomposed IMFs are then regrouped into aggregate series depicting high frequency and medium frequency, while the residual series represent the trend component. LSTM algorithm is used on the aggregated series to obtain predicted values of the same. The study compares different prediction algorithms to identify their performance and explore the predictive power of the hybrid models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Forecasting with Deep Learning: S&P 500 index
    Kamalov, Firuz
    Smail, Linda
    Gurrib, Ikhlaas
    [J]. 2020 13TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2020), 2020, : 422 - 425
  • [2] A hybrid modeling approach for forecasting the volatility of S&P 500 index return
    Hajizadeh, E.
    Seifi, A.
    Zarandi, M. N. Fazel
    Turksen, I. B.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (01) : 431 - 436
  • [3] Forecasting S&P 500 spikes: an SVM approach
    Theophilos Papadimitriou
    Periklis Gogas
    Athanasios Fotios Athanasiou
    [J]. Digital Finance, 2020, 2 (3-4): : 241 - 258
  • [4] Hybrid forecasting models for S&P 500 index returns
    Fukushima, Akihiro
    [J]. JOURNAL OF RISK FINANCE, 2011, 12 (04) : 315 - +
  • [5] Forecasting intraday S&P 500 index returns: A functional time series approach
    Shang, Han Lin
    [J]. JOURNAL OF FORECASTING, 2017, 36 (07) : 741 - 755
  • [6] S&P 500 Index Value Forecasting Using Decision Fusion Regression Model
    Montenegro, Carlos
    Navarrete, Rosa
    [J]. 2023 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2023, : 22 - 26
  • [7] Using neural networks for forecasting volatility of S&P 500 Index futures prices
    Hamid, SA
    Iqbal, Z
    [J]. JOURNAL OF BUSINESS RESEARCH, 2004, 57 (10) : 1116 - 1125
  • [8] Neural approach to forecasting of S&P 500 stock price index with virtual term generation
    Jo, TC
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL I AND II, 1999, : 502 - 507
  • [9] THE INFORMATION CONTENT OF THE S&P 500 INDEX AND VIX OPTIONS ON THE DYNAMICS OF THE S&P 500 INDEX
    Chung, San-Lin
    Tsai, Wei-Che
    Wang, Yaw-Huei
    Weng, Pei-Shih
    [J]. JOURNAL OF FUTURES MARKETS, 2011, 31 (12) : 1170 - 1201
  • [10] Forecasting S&P 500 stock index futures with a hybrid AI system
    Tsaih, R
    Hsu, YS
    Lai, CC
    [J]. DECISION SUPPORT SYSTEMS, 1998, 23 (02) : 161 - 174