CollRec: Pre-Trained Language Models and Knowledge Graphs Collaborate to Enhance Conversational Recommendation System

被引:0
|
作者
Liu, Shuang [1 ]
Ao, Zhizhuo [1 ]
Chen, Peng [2 ]
Kolmanic, Simon [3 ]
机构
[1] Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian 116600, Peoples R China
[2] Dalian Neusoft Univ Informat, Sch Comp & Software, Dalian 116023, Peoples R China
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor 2000, Slovenia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Knowledge graphs; Oral communication; Task analysis; Recommender systems; Motion pictures; Costs; Accuracy; Large language models; Conversational recommendation system; knowledge graph; large language model; end-to-end generation; fine-tuning; ReDial; WebNLG; 2020; challenge;
D O I
10.1109/ACCESS.2024.3434720
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing conversational recommender systems (CRS) use insufficient generality in incorporating external information using knowledge graphs. The recommendation module and generation module are loosely connected during model training and shallowly integrated during inference. A simple switching or copying mechanism is used to merge recommended items into generated responses. These problems significantly degrade the recommendation performance. To alleviate this problem, we propose a novel unified framework for collaboratively enhancing conversational recommendations using pre-trained language models and knowledge graphs (CollRec). We use a fine-tuned pre-trained language model to efficiently extract knowledge graphs from conversational text descriptions, perform entity-based recommendations based on the generated graph nodes and edges, and fine-tune a large-scale pre-trained language model to generate fluent and diverse responses. Experimental results on the WebNLG 2020 Challenge dataset, ReDial dataset, and Reddit-Movie dataset show that our CollRec model significantly outperforms the state-of-the-art methods.
引用
收藏
页码:104663 / 104675
页数:13
相关论文
共 50 条
  • [1] Evaluating Embeddings from Pre-Trained Language Models and Knowledge Graphs for Educational Content Recommendation
    Li, Xiu
    Henriksson, Aron
    Duneld, Martin
    Nouri, Jalal
    Wu, Yongchao
    [J]. FUTURE INTERNET, 2024, 16 (01)
  • [2] Empowering News Recommendation with Pre-trained Language Models
    Wu, Chuhan
    Wu, Fangzhao
    Qi, Tao
    Huang, Yongfeng
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1652 - 1656
  • [3] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [4] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [5] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [6] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [7] ReLMKG: reasoning with pre-trained language models and knowledge graphs for complex question answering
    Xing Cao
    Yun Liu
    [J]. Applied Intelligence, 2023, 53 : 12032 - 12046
  • [8] ReLMKG: reasoning with pre-trained language models and knowledge graphs for complex question answering
    Cao, Xing
    Liu, Yun
    [J]. APPLIED INTELLIGENCE, 2023, 53 (10) : 12032 - 12046
  • [9] Probing Simile Knowledge from Pre-trained Language Models
    Chen, Weijie
    Chang, Yongzhu
    Zhang, Rongsheng
    Pu, Jiashu
    Chen, Guandan
    Zhang, Le
    Xi, Yadong
    Chen, Yijiang
    Su, Chang
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5875 - 5887
  • [10] Continual knowledge infusion into pre-trained biomedical language models
    Jha, Kishlay
    Zhang, Aidong
    [J]. BIOINFORMATICS, 2022, 38 (02) : 494 - 502