Wind speed analysis using Weibull and lower upper truncated Weibull distribution in Bangladesh

被引:3
|
作者
Jahan, Saima [1 ,2 ]
Masseran, Nurulkamal [1 ]
Zin, W. Z. Wan [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
[2] East West Univ, Dept Math & Phys Sci, Dhaka, Bangladesh
关键词
Wind speed; Weibull distribution; Lower-upper-truncated Weibull distribution; Maximum likelihood method; MAXIMUM-ENTROPY PRINCIPLE; PROBABILITY-DISTRIBUTION; ENERGY; REGION;
D O I
10.1016/j.egyr.2024.05.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind speed (WS) is the most important factor for modeling wind energy. WSs below a lower truncation point are usually not able to generate energy. Conversely, WSs higher than the upper truncation point may damage wind turbines. Moreover, the presence of missing values in WS data may hamper the analysis results of WS estimates. This study used the mean imputation and linear regression methods for estimating missing values and aimed to analyze the characteristics of WS data in Bangladesh using the Weibull distribution and the lower -upper-trun- cated Weibull distribution (TWD). The maximum likelihood method was used to determine the Weibull and truncated Weibull parameters. Our data revealed that TWD showed better performance than WD in terms of root mean square error (RMSE) and KolmogorovSmirnov (KS) in WS distribution estimation. Lower -upper-TWD can be used in the assessment of wind energy potential.
引用
收藏
页码:5456 / 5465
页数:10
相关论文
共 50 条
  • [1] Analysis of the upper-truncated Weibull distribution for wind speed
    Kantar, Yeliz Mert
    Usta, Ilhan
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 96 : 81 - 88
  • [2] Weibull and Chi-square fits for wind speed distribution in Bangladesh
    Alam, Z
    Khan, KA
    [J]. RENEWABLE ENERGY: TECHNOLOGIES & POLICIES FOR SUSTAINABLE DEVELOPMENT, 1999, : 533 - 536
  • [3] Statistical Analysis of Wind Speed Data Using Weibull Distribution Parameters
    Chauhan, Anurag
    Saini, R. P.
    [J]. PROCEEDINGS OF 2014 1ST INTERNATIONAL CONFERENCE ON NON CONVENTIONAL ENERGY (ICONCE 2014), 2014, : 160 - 163
  • [4] An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution
    Akgul, Fatma Gul
    Senoglu, Birdal
    Arslan, Talha
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 114 : 234 - 240
  • [5] Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions
    Dokur, Emrah
    Ceyhan, Salim
    Kurban, Mehmet
    [J]. ELECTRICA, 2022, 22 (01): : 52 - 60
  • [6] On the upper truncated Weibull distribution and its reliability implications
    Zhang, Tieling
    Xie, Min
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (01) : 194 - 200
  • [7] A Theoretical Analysis on Parameter Estimation for the Weibull Wind Speed Distribution
    Tuzuner, Akiner
    Yu, Zuwei
    [J]. 2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 505 - 510
  • [8] The parent wind speed distribution: Why Weibull?
    Harris, R. Ian
    Cook, Nicholas J.
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 131 : 72 - 87
  • [9] Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis
    Seguro, JV
    Lambert, TW
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2000, 85 (01) : 75 - 84
  • [10] Analysis of Wind Characteristics using ARMA & Weibull Distribution
    Nayak, Ashwini Kumar
    Mohanty, Kanungo Barada
    [J]. 2018 NATIONAL POWER ENGINEERING CONFERENCE (NPEC), 2018,