Determining the most suitable Sentinel-2 indices for turbidity and chlorophyll-a concentration for an oligotrophic to mesotrophic reservoir in Brazil

被引:0
|
作者
Coelho Pizani, Fernanda Mara [1 ]
de Amorim, Camila Costa [2 ]
Maillard, Philippe [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Geog, 6627 Ave Antonio Carlos, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Environm Engn, 6627 Ave Antonio Carlos, BR-31270901 Belo Horizonte, Brazil
关键词
chlorophyll-a; turbidity; empirical models; Sentinel-2; reservoir; ASSESSING WATER-QUALITY; LAKES; ALGORITHM; COASTAL; INLAND; CLASSIFICATION; SENSORS; BLOOMS; DEPTH;
D O I
10.1504/IJHST.2024.140850
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water quality is a major issue for agencies responsible for the management and maintenance of reservoirs. In this article, Sentinel-2 (S-2) data is tested to produce reliable estimates of turbidity and chlorophyll-a concentrations in an oligotrophic to mesotrophic reservoir in Brazil. The spectral bands were all tested individually and jointly to determine the best and most stable features. Many indices are also tested. In situ data was acquired over a period of three years with synchronous S-2 data. The models were evaluated on their robustness and stability using a bundle of in situ dataset (all field campaigns). The results show that no model can be directly applied to other reservoirs or different dates without calibration. Conversely, calibrating the S-2 indices with two in situ measurements greatly reduces the errors. Average root mean square errors of 0.518 FNU and 1.1 mu g/l were obtained for turbidity and chlorophyll-a concentrations respectively.
引用
收藏
页数:31
相关论文
共 20 条
  • [1] Mar Menor lagoon (SE Spain) chlorophyll-a and turbidity estimation with Sentinel-2
    Zhan, Y.
    Delegido, J.
    Erena, M.
    Soria, J. M.
    Ruiz-Verdu, A.
    Urrego, P.
    Soria-Perpinya, X.
    Vicente, E.
    Moreno, J.
    [J]. LIMNETICA, 2022, 41 (02): : 305 - 323
  • [2] Challenges for chlorophyll-a remote sensing in a highly variable turbidity estuary, an implementation with sentinel-2
    Maciel, Fernanda P.
    Haakonsson, Signe
    de Leon, Lucia Ponce
    Bonilla, Sylvia
    Pedocchi, Francisco
    [J]. GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [3] Retrieval of chlorophyll-a concentration based on Sentinel-2 images in inland lakes
    Shi, Xuming
    Gu, Lingjia
    Jiang, Tao
    Jiang, Mingda
    [J]. EARTH OBSERVING SYSTEMS XXVII, 2022, 12232
  • [4] Remote Analysis of the Chlorophyll-a Concentration Using Sentinel-2 MSI Images in a Semiarid Environment in Northeastern Brazil
    Aranha, Thais R. Benevides T.
    Martinez, Jean-Michel
    Souza, Enio P.
    Barros, Mario U. G.
    Martins, Eduardo Savio P. R.
    [J]. WATER, 2022, 14 (03)
  • [5] Tracking changes in chlorophyll-a concentration and turbidity in Nansi Lake using Sentinel-2 imagery: A novel machine learning approach
    Zhang, Jiawei
    Meng, Fei
    Fu, Pingjie
    Jing, Tingting
    Xu, Jie
    Yang, Xinyue
    [J]. ECOLOGICAL INFORMATICS, 2024, 81
  • [6] Remote Detection of Cyanobacterial Blooms and Chlorophyll-a Analysis in a Eutrophic Reservoir Using Sentinel-2
    Viso-Vazquez, Manuel
    Acuna-Alonso, Carolina
    Luis Rodriguez, Juan
    Alvarez, Xana
    [J]. SUSTAINABILITY, 2021, 13 (15)
  • [7] Calibration and validation of algorithms for the estimation of chlorophyll-a concentration and Secchi depth in inland waters with Sentinel-2
    Pereira-Sandoval, Marcela
    Patricia Urrego, Esther
    Ruiz-Verdu, Antonio
    Tenjo, Carolina
    Delegido, Jesus
    Soria-Perpinya, Xavier
    Vicente, Eduardo
    Soria, Juan
    Moreno, Jose
    [J]. LIMNETICA, 2019, 38 (01): : 471 - 487
  • [8] ASSESSMENT OF ATMOSPHERIC CORRECTION METHODS FOR SENTINEL-2 MSI IMAGES APPLIED TO CHLOROPHYLL-A RETRIEVAL IN AN EUTROPHIC RESERVOIR
    German, Alba
    Shimoni, Michal
    Sander de Carvalho, Lino A.
    Beltramone, Giuliana
    Bonansea, Matias
    Marcelo Scavuzzo, C.
    Ferral, Anabella
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2781 - 2784
  • [9] Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability
    Jang, Wonjin
    Kim, Jinuk
    Kim, Jin Hwi
    Shin, Jae-Ki
    Chon, Kangmin
    Kang, Eue Tae
    Park, Yongeun
    Kim, Seongjoon
    [J]. REMOTE SENSING, 2024, 16 (02)
  • [10] Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity
    Kuhn, Catherine
    Valerio, Aline de Matos
    Ward, Nick
    Loken, Luke
    Sawakuchi, Henrique Oliveira
    Karnpel, Milton
    Richey, Jeffrey
    Stadler, Philipp
    Crawford, John
    Striegl, Rob
    Vermote, Eric
    Pahlevan, Nima
    Butman, David
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 224 : 104 - 118