Solid oxide fuel cells with integrated direct air carbon capture: A techno-economic study

被引:0
|
作者
Griffiths, Imogen [1 ]
Wang, Ruiqi [1 ]
Ling-Chin, Janie [1 ]
Roskilly, Anthony Paul [1 ]
机构
[1] Univ Durham, Dept Engn, Durham DH1 3LE, England
关键词
Direct air carbon capture; Solid oxide fuel cells; Hydrogen; Levelised cost; POWER-GENERATION; CO2; CAPTURE; OPERATION; SYSTEM;
D O I
10.1016/j.enconman.2024.118739
中图分类号
O414.1 [热力学];
学科分类号
摘要
Direct air carbon capture, as a negative emissions technology, is pivotal to lowering carbon dioxide concentration in the atmosphere. Accompanying the development and application of this technology, the high energy demand and substantial capital cost associated with direct air carbon capture have been persistent concerns. This paper aims to analyse the technical and economic feasibility of utilising a hydrogen fed solid oxide fuel cell as a source of both electricity and high-grade heat for the process of direct air carbon capture. It is vital that a renewable form of hydrogen production is used for this process to be sustainable, therefore a renewable hydrogen fed 50 MW solid oxide fuel cell is modelled, integrated with a direct air carbon capture process, resulting in a system with the capacity to remove carbon dioxide just over 270 kt/year directly from the air. The current levelised cost of capture for the system varies widely with the price of renewable hydrogen production, with an estimated range of 314-1,505 pound per tonne of carbon dioxide captured. As the cost of renewable hydrogen declines in the future, such a process could become a feasible alternative to natural gas fed direct air capture, with a 2050 levelised cost of capture anticipated to be 191 pound per tonne.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Techno-economic analysis of direct air carbon capture and hydrogen production integrated with a small modular reactor
    Slavin, Brittney
    Wang, Ruiqi
    Roy, Dibyendu
    Ling-Chin, Janie
    Roskilly, Anthony Paul
    [J]. APPLIED ENERGY, 2024, 356
  • [2] Life cycle and techno-economic assessments of direct air capture processes: An integrated review
    Chauvy, Remi
    Dubois, Lionel
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10320 - 10344
  • [3] A techno-economic analysis of biomass gasifiers integrated with high and intermediate temperature solid oxide fuel cells
    McIlveen-Wright, D. R.
    Moglie, M.
    Rezvani, S.
    Huang, Y.
    Anderson, M.
    Redpath, D.
    Dave, A.
    Hewitt, N. J.
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (12) : 1037 - 1047
  • [4] Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation
    Daniel, Thorin
    Masini, Alice
    Milne, Cameron
    Nourshagh, Neeka
    Iranpour, Cameron
    Xuan, Jin
    [J]. CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
  • [5] Techno-Economic Analysis of a Thermally Integrated Solid Oxide Fuel Cell and Compressed Air Energy Storage Hybrid System
    Buchheit, Kyle L.
    Noring, Alexander A.
    Iyengar, Arun K. S.
    Hackett, Gregory A.
    Sadykov, Vladislav A.
    [J]. ENERGIES, 2024, 17 (01)
  • [6] A sorbent-focused techno-economic analysis of direct air capture
    Azarabadi, Habib
    Lackner, Klaus S.
    [J]. APPLIED ENERGY, 2019, 250 : 959 - 975
  • [7] Integrated techno-economic and life cycle assessment of a novel algae-based coating for direct air carbon capture and sequestration
    Cole, Garrett M.
    Greene, Jonah M.
    Quinn, Jason C.
    McDaniel, Beth
    Kemp, Lisa
    Simmons, David
    Hodges, Tyler
    Nobles, David
    Weiss, Taylor L.
    McGowen, John
    McDaniel, Steve
    [J]. JOURNAL OF CO2 UTILIZATION, 2023, 69
  • [8] Research progress of typical process analysis and techno-economic research on direct air capture of carbon dioxide
    Wang, Ding
    Zhang, Jie
    Yang, Bolun
    Wu, Zhiqiang
    [J]. Meitan Kexue Jishu/Coal Science and Technology (Peking), 2023, 51 : 215 - 221
  • [9] Techno-Economic Assessment of the Integration of Direct Air Capture and the Production of Solar Fuels
    Prats-Salvado, Enric
    Monnerie, Nathalie
    Sattler, Christian
    [J]. ENERGIES, 2022, 15 (14)
  • [10] Solar-Powered Direct Air Capture: Techno-Economic and Environmental Assessment
    Prats-Salvado, Enric
    Jagtap, Nipun
    Monnerie, Nathalie
    Sattler, Christian
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (05) : 2282 - 2292