Machine Learning Assisted MALDI Mass Spectrometry for Rapid Antimicrobial Resistance Prediction in Clinicals

被引:0
|
作者
Gao, Weibo [1 ]
Li, Hang [4 ]
Yang, Jingxian [2 ]
Zhang, Jinming [3 ]
Fu, Rongxin [4 ]
Peng, Jiaxi [5 ]
Hu, Yechen [5 ]
Liu, Yitong [5 ]
Wang, Yingshi [2 ]
Li, Shuang [3 ]
Zhang, Shuailong [1 ,6 ,7 ]
机构
[1] Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robots & Syst, Sch Mechatron Engn, Beijing 100081, Peoples R China
[2] Aerosp Ctr Hosp, Dept Clin Lab, Beijing 100039, Peoples R China
[3] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[5] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[6] Beijing Inst Technol, Sch Integrated Circuits & Elect, Beijing 100081, Peoples R China
[7] Beijing Inst Technol, Zhengzhou Res Inst, Zhengzhou 100081, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金; 中国国家自然科学基金;
关键词
ANTIBIOTIC-RESISTANCE; ENTEROCOCCUS-FAECIUM; TOF-MS; IDENTIFICATION; SUSCEPTIBILITY;
D O I
10.1021/acs.analchem.4c00741
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Antimicrobial susceptibility testing (AST) plays a critical role in assessing the resistance of individual microbial isolates and determining appropriate antimicrobial therapeutics in a timely manner. However, conventional AST normally takes up to 72 h for obtaining the results. In healthcare facilities, the global distribution of vancomycin-resistant Enterococcus fecium (VRE) infections underscores the importance of rapidly determining VRE isolates. Here, we developed an integrated antimicrobial resistance (AMR) screening strategy by combining matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) with machine learning to rapidly predict VRE from clinical samples. Over 400 VRE and vancomycin-susceptible E. faecium (VSE) isolates were analyzed using MALDI-MS at different culture times, and a comprehensive dataset comprising 2388 mass spectra was generated. Algorithms including the support vector machine (SVM), SVM with L1-norm, logistic regression, and multilayer perceptron (MLP) were utilized to train the classification model. Validation on a panel of clinical samples (external patients) resulted in a prediction accuracy of 78.07%, 80.26%, 78.95%, and 80.54% for each algorithm, respectively, all with an AUROC above 0.80. Furthermore, a total of 33 mass regions were recognized as influential features and elucidated, contributing to the differences between VRE and VSE through the Shapley value and accuracy, while tandem mass spectrometry was employed to identify the specific peaks among them. Certain ribosomal proteins, such as A0A133N352 and R2Q455, were tentatively identified. Overall, the integration of machine learning with MALDI-MS has enabled the rapid determination of bacterial antibiotic resistance, greatly expediting the usage of appropriate antibiotics.
引用
收藏
页码:13398 / 13409
页数:12
相关论文
共 50 条
  • [1] Rapid detection of antimicrobial resistance by MALDI-TOF mass spectrometry
    Oviano, Marina
    Dolores Rojo, Maria
    Navarro Mari, Jose Maria
    Bou, German
    ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA, 2016, 34 : 36 - 41
  • [2] Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp.
    Feucherolles, Maureen
    Nennig, Morgane
    Becker, Soeren L.
    Martiny, Delphine
    Losch, Serge
    Penny, Christian
    Cauchie, Henry-Michel
    Ragimbeau, Catherine
    FRONTIERS IN MICROBIOLOGY, 2022, 12
  • [3] Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning
    Caroline Weis
    Aline Cuénod
    Bastian Rieck
    Olivier Dubuis
    Susanne Graf
    Claudia Lang
    Michael Oberle
    Maximilian Brackmann
    Kirstine K. Søgaard
    Michael Osthoff
    Karsten Borgwardt
    Adrian Egli
    Nature Medicine, 2022, 28 : 164 - 174
  • [4] Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning
    Weis, Caroline
    Cuenod, Aline
    Rieck, Bastian
    Llinares-Lopez, Felipe
    Dubuis, Olivier
    Graf, Susanne
    Lang, Claudia
    Oberle, Michael
    Brackmann, Maximilian
    Sogaard, Kirstine K.
    Osthoff, Michael
    Borgwardt, Karsten
    Egli, Adrian
    NATURE MEDICINE, 2022, 28 (01) : 164 - +
  • [5] MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid Diagnosis of Antimicrobial Resistance in Bacteria
    Yoon, Eun-Jeong
    Jeong, Seok Hoon
    ANTIBIOTICS-BASEL, 2021, 10 (08):
  • [6] Speciation and milk adulteration analysis by rapid ambient liquid MALDI mass spectrometry profiling using machine learning
    Piras, Cristian
    Hale, Oliver J.
    Reynolds, Christopher K.
    Jones, A. K.
    Taylor, Nick
    Morris, Michael
    Cramer, Rainer
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Speciation and milk adulteration analysis by rapid ambient liquid MALDI mass spectrometry profiling using machine learning
    Cristian Piras
    Oliver J. Hale
    Christopher K. Reynolds
    A. K. Jones
    Nick Taylor
    Michael Morris
    Rainer Cramer
    Scientific Reports, 11
  • [8] Rapid detection of antimicrobial resistance in methicillin-resistant Staphylococcus aureus using MALDI-TOF mass spectrometry
    Rensner, Josiah J.
    Lueth, Paul
    Bellaire, Bryan H.
    Sahin, Orhan
    Lee, Young Jin
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [9] Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics
    Wiebke Timm
    Alexandra Scherbart
    Sebastian Böcker
    Oliver Kohlbacher
    Tim W Nattkemper
    BMC Bioinformatics, 9
  • [10] Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics
    Timm, Wiebke
    Scherbart, Alexandra
    Boecker, Sebastian
    Kohlbacher, Oliver
    Nattkemper, Tim W.
    BMC BIOINFORMATICS, 2008, 9 (1)