Campanato-Morrey spaces and variable Riesz potentials

被引:0
|
作者
Ohno, T. [1 ]
Shimomura, T. [2 ]
机构
[1] Oita Univ, Fac Educ, Dannoharu Oita city 8701192, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima 7398524, Japan
关键词
BMO; grand Morrey space; Riesz potential; Campanato-Morrey space; variable exponent; SOBOLEV EMBEDDINGS; LEBESGUE SPACES; GRAND; INTEGRABILITY; BOUNDEDNESS; INTEGRALS; OPERATORS; THEOREM;
D O I
10.1007/s10474-024-01465-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim in this note is to show that the variable Riesz potential operator I alpha(<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha(\cdot)}$$\end{document} embeds variable exponent grand Morrey spaces Lp(<middle dot>)-0,nu(<middle dot>),theta(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p(\cdot)-0,\nu(\cdot),\theta}(G)$$\end{document} into Campanato-Morrey spaces.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Campanato-Morrey spaces for the double phase functionals with variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [2] Campanato-Morrey spaces for the double phase functionals
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 817 - 834
  • [3] Weighted Morrey spaces of variable exponent and Riesz potentials
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 984 - 1002
  • [4] QUASI-LINEAR EQUATIONS AND SPACES OF CAMPANATO-MORREY TYPE
    RAKOTOSON, JM
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (6-7) : 1155 - 1182
  • [5] EMBEDDING THEOREMS ON CAMPANATO-MORREY SPACES FOR VECTOR FIELDS OF HoRMANDER TYPE
    Guozhen Lu (Wright State University
    [J]. Analysis in Theory and Applications, 1998, (01) : 69 - 80
  • [6] Variable exponent Morrey and Campanato spaces
    Fan, Xianling
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) : 4148 - 4161
  • [7] Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 671 - 695
  • [8] EMBEDDING-THEOREMS ON CAMPANATO-MORREY SPACES FOR VECTOR-FIELDS AND APPLICATIONS
    LU, GZ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (04): : 429 - 434
  • [9] CONTINUITY PROPERTIES FOR RIESZ POTENTIALS OF FUNCTIONS IN MORREY SPACES OF VARIABLE EXPONENT
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (01): : 99 - 122
  • [10] Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) : 583 - 602