Image registration combining cross-scale point matching and multi-scale feature fusion

被引:0
|
作者
Ou, Zhuolin [1 ]
Lu, Xiaoqi [1 ,2 ]
Gu, Yu [1 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Informat Engn, Baotou 014010, Peoples R China
[2] Inner Mongolia Univ Technol, Sch Informat Engn, Hohhot 010051, Peoples R China
基金
中国国家自然科学基金;
关键词
medical image registration; encoder decoder structure; feature weighting; feature matching; attention mechanism;
D O I
10.37188/CJLCD.2023-0278
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Image registration plays an important role in computer-aided diagnosis of brain diseases and remote surgery. The U-Net and its variants have been widely used in the field of medical image registration, , achieving good results in registration accuracy and time. However, , existing registration models have difficulty in learning the edge features of small structures in complex image deformations and ignore the correlation of contextual information at different scales. To address these issues, , a registration model is proposed based on cross-scale point matching combined with multi-scale feature fusion. Firstly, , a cross-scale point matching module is introduced into encoding structure of the model to enhance the representation of prominent region features and grasp the edge details of small structure features. Then, , multi-scale features are fused in the decoding structure to form a more comprehensive feature description. Finally, , an attention module is integrated into the multi-scale feature fusion module to highlight spatial and channel information. The experimental results on three brain Magnetic Resonance (MR ) datasets show that, , taking the OASIS-3 dataset as an example, , the registration accuracy has been improved by 23. 5%, , 12. 4%, , 0. 9%, , and 2. 1% compared to methods such as Affine, SyN, VoxelMorph and CycleMorph, , respectively. The corresponding ASD values for each method have decreased by 1. 074, 0. 434, 0. 043, and 0. 076. The proposed model can better grasp the feature information of images, , which improves registration accuracy and has important implications for the development of medical image registration.
引用
收藏
页码:1090 / 1102
页数:13
相关论文
共 26 条
  • [1] Adelson E. H., 1984, RCA Eng., V29, P33
  • [2] Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain
    Avants, B. B.
    Epstein, C. L.
    Grossman, M.
    Gee, J. C.
    [J]. MEDICAL IMAGE ANALYSIS, 2008, 12 (01) : 26 - 41
  • [3] An Unsupervised Learning Model for Deformable Medical Image Registration
    Balakrishnan, Guha
    Zhao, Amy
    Sabuncu, Mert R.
    Guttag, John
    Dalca, Adrian V.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9252 - 9260
  • [4] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [5] Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks
    Eppenhof, Koen A. J.
    Pluim, Josien P. W.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1097 - 1105
  • [6] Fan J., 2021, ICAS 2021 2021 IEEE, P1, DOI [DOI 10.1109/ICAS49788.2021.9551165, 10.1109/ICAS49788.2021.9551165]
  • [7] FreeSurfer
    Fischl, Bruce
    [J]. NEUROIMAGE, 2012, 62 (02) : 774 - 781
  • [8] Deep learning in medical image registration: a review
    Fu, Yabo
    Lei, Yang
    Wang, Tonghe
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (20):
  • [9] Glasner D, 2009, IEEE I CONF COMP VIS, P349, DOI 10.1109/ICCV.2009.5459271
  • [10] Weakly-supervised convolutional neural networks for multimodal image registration
    Hu, Yipeng
    Modat, Marc
    Gibson, Eli
    Li, Wenqi
    Ghavamia, Nooshin
    Bonmati, Ester
    Wang, Guotai
    Bandula, Steven
    Moore, Caroline M.
    Emberton, Mark
    Ourselin, Sebastien
    Noble, J. Alison
    Barratt, Dean C.
    Vercauteren, Tom
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 49 : 1 - 13