Bridging spatio-temporal discontinuities in global soil moisture mapping by coupling physics in deep learning

被引:0
|
作者
Wei, Zushuai [1 ]
Miao, Linguang [2 ]
Peng, Jian [3 ,4 ]
Zhao, Tianjie [5 ]
Meng, Lingkui [6 ]
Lu, Hui [7 ,8 ,9 ]
Peng, Zhiqing [5 ]
Cosh, Michael H. [10 ]
Fang, Bin [11 ]
Lakshmi, Venkat [11 ]
Shi, Jiancheng [12 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Peoples R China
[2] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454150, Peoples R China
[3] UFZ Helmholtz Ctr Environm Res, Dept Remote Sensing, D-04318 Leipzig, Germany
[4] Univ Leipzig, Remote Sensing Ctr Earth Syst Res RSC4Earth, D-04103 Leipzig, Germany
[5] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
[6] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[7] Tsinghua Univ, Inst Global Change Studies, Dept Earth Syst Sci, Beijing 100084, Peoples R China
[8] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[9] Tsinghua Univ, Xian Inst Surveying & Mapping, Joint Res Ctr Next Generat Smart Mapping, Dept Earth Syst Sci, Beijing 100084, Peoples R China
[10] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[11] Univ Virginia, Dept Civil & Environm Engn, Charlottesville, VA 22904 USA
[12] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
SMAP; Soil moisture; Gap-filling; Dry-down; Physical constraints; Partial convolutional neural network; TIBETAN PLATEAU; TEMPORAL STABILITY; NEAR-SURFACE; WEST-AFRICA; SATELLITE; SMAP; NETWORK; RESOLUTION; PRODUCTS; PRECIPITATION;
D O I
10.1016/j.rse.2024.114371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The launch of Soil Moisture Active Passive (SMAP) satellite in 2015 has resulted in significant achievements in global soil moisture mapping. Nonetheless, spatiotemporal discontinuities in the soil moisture products have arisen due to the limitations of its orbit scanning gap and retrieval algorithms. To address these issues, this paper presents a physics-constrained gap-filling method, PhyFill for short. The PhyFill method employs a partial convolutional neural network technique to explore spatial domain features of the original SMAP soil moisture data. Then, it incorporates variations in soil moisture induced by precipitation events and dry-down events as penalty terms in the loss function, thereby accounting for monotonicity and boundary constraints in the physical processes governing the dynamic fluctuations of soil moisture. The PhyFill model was applied to SMAP soil moisture data, resulting in continuous spatially daily soil moisture data on a global scale. Three validation strategies are employed: visual inspection through global pattern, simulated missing-region validation, and soil moisture validation with in situ measurements. The results indicated that the reconstructed soil moisture achieved a higher spatial coverage with satisfactory spatial continuity with neighbouring pixels. The simulated validation of the missing regions revealed that the averaged unbiased root mean square difference (ubRMSD) and correlation coefficient (R) were 0.01 m3/m3 3 /m 3 and 0.99, respectively versus the gap filled SMAP product. The core validation sites demonstrated that the reconstructed soil moisture data has a consistent ubRMSD compared with the original SMAP soil moisture data (0.04 m3/m3 3 /m 3 vs. 0.04 m3/m3). 3 /m 3 ). The PhyFill method can generate globally continuous, high accurate soil moisture estimates, providing remarkable support for advanced hydrological applications, e.g., , global soil moisture dry-down events and patterns.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Spatio-temporal variability of global soil moisture products
    Roetzer, K.
    Montzka, C.
    Vereecken, H.
    [J]. JOURNAL OF HYDROLOGY, 2015, 522 : 187 - 202
  • [2] Study on spatio-temporal simulation and prediction of regional deep soil moisture using machine learning
    A, Yinglan
    Jiang, Xiaoman
    Wang, Yuntao
    Wang, Libo
    Zhang, Zihao
    Duan, Limin
    Fang, Qingqing
    [J]. JOURNAL OF CONTAMINANT HYDROLOGY, 2023, 258
  • [3] NONLINEAR COMPLEX PCA FOR SPATIO-TEMPORAL ANALYSIS OF GLOBAL SOIL MOISTURE
    Bueso, Diego
    Piles, Maria
    Camps-Valls, Gustau
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5780 - 5783
  • [4] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    [J]. MATHEMATICS, 2022, 10 (18)
  • [5] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    SONG Xiaodong
    ZHANG Ganlin
    LIU Feng
    LI Decheng
    ZHAO Yuguo
    YANG Jinling
    [J]. Journal of Arid Land, 2016, 8 (05) : 734 - 748
  • [6] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    Xiaodong Song
    Ganlin Zhang
    Feng Liu
    Decheng Li
    Yuguo Zhao
    Jinling Yang
    [J]. Journal of Arid Land, 2016, 8 : 734 - 748
  • [7] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    Song Xiaodong
    Zhang Ganlin
    Liu Feng
    Li Decheng
    Zhao Yuguo
    Yang Jinling
    [J]. JOURNAL OF ARID LAND, 2016, 8 (05) : 734 - 748
  • [8] Spatio-temporal Mapping of Cotton Blooms Appearance Using Deep Learning
    Thesma, Vaishnavi
    Mwitta, Canicius
    Rains, Glen
    Velni, Javad Mohammadpour
    [J]. IFAC PAPERSONLINE, 2022, 55 (32): : 36 - 41
  • [9] IMPROVING SOIL MOISTURE SPATIO-TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD
    Cui, Yaokui
    Chen, Xi
    Luo, Zengliang
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4574 - 4577
  • [10] On the spatio-temporal dynamics of soil moisture at the field scale
    Vereecken, H.
    Huisman, J. A.
    Pachepsky, Y.
    Montzka, C.
    van der Kruk, J.
    Bogena, H.
    Weihermueller, L.
    Herbst, M.
    Martinez, G.
    Vanderborght, J.
    [J]. JOURNAL OF HYDROLOGY, 2014, 516 : 76 - 96