Trace formulas and inverse spectral theory for generalized indefinite strings

被引:0
|
作者
Eckhardt, Jonathan [1 ]
Kostenko, Aleksey [2 ,3 ,4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Epinal Way, Loughborough LE11 3TU, Leics, England
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Wien, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[4] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-101, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
34A55; 34B07; 34L05; 37K15; GLOBAL CONSERVATIVE SOLUTIONS; CAMASSA-HOLM EQUATION; KORTEWEG-DE-VRIES; ABSOLUTELY CONTINUOUS-SPECTRUM; SHALLOW-WATER EQUATION; SUM-RULES; SCHRODINGER-OPERATORS; ISOSPECTRAL PROBLEM; WEAK SOLUTIONS; SCATTERING;
D O I
10.1007/s00222-024-01287-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized indefinite strings provide a canonical model for self-adjoint operators with simple spectrum (other classical models are Jacobi matrices, Krein strings and 2x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\times 2$\end{document} canonical systems). We prove a number of Szeg & odblac;-type theorems for generalized indefinite strings and related spectral problems (including Krein strings, canonical systems and Dirac operators). More specifically, for several classes of coefficients (that can be regarded as Hilbert-Schmidt perturbations of model problems), we provide a complete characterization of the corresponding set of spectral measures. In particular, our results also apply to the isospectral Lax operator for the conservative Camassa-Holm flow and allow us to establish existence of global weak solutions with various step-like initial conditions of low regularity via the inverse spectral transform.
引用
收藏
页数:112
相关论文
共 50 条
  • [1] The inverse spectral problem for indefinite strings
    Jonathan Eckhardt
    Aleksey Kostenko
    [J]. Inventiones mathematicae, 2016, 204 : 939 - 977
  • [2] The inverse spectral problem for indefinite strings
    Eckhardt, Jonathan
    Kostenko, Aleksey
    [J]. INVENTIONES MATHEMATICAE, 2016, 204 (03) : 939 - 977
  • [3] Trace formulas and inverse spectral theory for Jacobi operators
    Teschl, G
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) : 175 - 202
  • [4] Trace Formulas and Inverse Spectral Theory for Jacobi Operators
    Gerald Teschl
    [J]. Communications in Mathematical Physics, 1998, 196 : 175 - 202
  • [5] TRACE FORMULAS AND INVERSE SPECTRAL THEORY FOR SCHRODINGER-OPERATORS
    GESZTESY, F
    HOLDEN, H
    SIMON, B
    ZHAO, Z
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) : 250 - 255
  • [6] Direct and inverse spectral problems for generalized strings
    Heinz Langer
    Henrik Winkler
    [J]. Integral Equations and Operator Theory, 1998, 30 : 409 - 431
  • [7] Direct and inverse spectral problems for generalized strings
    Langer, H
    Winkler, H
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 30 (04) : 409 - 431
  • [8] The Classical Moment Problem and Generalized Indefinite Strings
    Eckhardt, Jonathan
    Kostenko, Aleksey
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (02)
  • [9] The Classical Moment Problem and Generalized Indefinite Strings
    Jonathan Eckhardt
    Aleksey Kostenko
    [J]. Integral Equations and Operator Theory, 2018, 90
  • [10] On the Absolutely Continuous Spectrum of Generalized Indefinite Strings
    Eckhardt, Jonathan
    Kostenko, Aleksey
    [J]. ANNALES HENRI POINCARE, 2021, 22 (11): : 3529 - 3564