ERA-CRISPR/Cas12a system: a rapid, highly sensitive and specific assay for Mycobacterium tuberculosis

被引:0
|
作者
Gan, Tian [1 ]
Yu, Jianwei [2 ]
Deng, Zhongliang [2 ]
He, Jun [1 ]
机构
[1] Univ South China, Affiliated Nanhua Hosp, Hengyang Med Sch, Dept Clin Lab, Hengyang, Peoples R China
[2] Univ South China, Sch Publ Hlth, Hengyang Med Sch, Dept Publ Hlth,Lab Sci, Hengyang, Hunan, Peoples R China
关键词
Mycobacterium tuberculosis; CRISPR/Cas12a; enzymatic recombinant isothermal amplification; fluorescence detection; lateral flow test; CRISPR-CAS12A;
D O I
10.3389/fcimb.2024.1454076
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Introduction Mycobacterium tuberculosis, the causative agent of human tuberculosis, poses a significant threat to global public health and imposes a considerable burden on the economy. However, existing laboratory diagnostic methods for M. tuberculosis are time-consuming and have limited sensitivity levels. Methods The CRISPR/Cas system, commonly known as the "gene scissors", demonstrates remarkable specificity and efficient signal amplification capabilities. Enzymatic recombinase amplification (ERA) was utilized to rapidly amplify trace DNA fragments at a consistent temperature without relying on thermal cyclers. By integrating of CRISPR/Cas12a with ERA, we successfully developed an ERA-CRISPR/Cas12a detection system that enables rapid identification of M. tuberculosis. Results The sensitivity of the ERA-CRISPR/Cas12a fluorescence and lateral flow systems was 9 copies/mu L and 90 copies/mu L, respectively. Simultaneously, the detection system exhibited no cross-reactivity with various of respiratory pathogens and non-tuberculosis mycobacteria, demonstrating a specificity of 100%. The positive concordance rate between the ERA-CRISPR/Cas12a fluorescence system and commercial qPCR was 100% in 60 clinical samples. Meanwhile, the lateral flow system showed a positive concordance rate of 93.8% when compared to commercial qPCR. Both methods demonstrated a negative concordance rate of 100%, and the test results can be obtained in 50 min at the earliest. Discussion The ERA-CRISPR/Cas12a system offers a rapid, sensitive, and specific method that presents a novel approach to laboratory diagnosis of M. tuberculosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Rapid and Visual Detection of Porcine Parvovirus Using an ERA-CRISPR/Cas12a System Combined With Lateral Flow Dipstick Assay
    Wei, Jing
    Li, Yanan
    Cao, Yingli
    Liu, Qi
    Yang, Kankan
    Song, Xiangjun
    Shao, Ying
    Qi, Kezong
    Tu, Jian
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
  • [2] One-Pot Era-CRISPR/Cas12a System for Rapid and Sensitive Detection of Multiple NPM1 Mutations
    Liu, Yin
    Liu, Xinyi
    Huang, Xingxu
    Li, Kui
    Wang, Xinjie
    Zhou, Fuling
    BLOOD, 2023, 142
  • [3] Rapid and sensitive exosome detection with CRISPR/Cas12a
    Zhao, Xianxian
    Zhang, Wenqing
    Qiu, Xiaopei
    Mei, Qiang
    Luo, Yang
    Fu, Weiling
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (03) : 601 - 609
  • [4] Rapid and sensitive exosome detection with CRISPR/Cas12a
    Xianxian Zhao
    Wenqing Zhang
    Xiaopei Qiu
    Qiang Mei
    Yang Luo
    Weiling Fu
    Analytical and Bioanalytical Chemistry, 2020, 412 : 601 - 609
  • [5] A CRISPR-Cas12a-based platform for ultrasensitive rapid highly specific detection of Mycobacterium tuberculosis in clinical application
    Jia, Nan
    Wang, Chaohong
    Liu, Xiaming
    Huang, Xiaolan
    Xiao, Fei
    Fu, Jin
    Sun, Chunrong
    Xu, Zheng
    Wang, Guirong
    Zhou, Juan
    Wang, Yi
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [6] Novel methods for the rapid and sensitive detection of Nipah virus based on a CRISPR/Cas12a system
    Yang, Xi
    Xu, Kexin
    Li, Siying
    Zhang, Jiangnian
    Xie, Yinli
    Lou, Yongliang
    Xiao, Xingxing
    ANALYST, 2024, 149 (09) : 2586 - 2593
  • [7] Sensitive and Rapid Detection of Citrus Scab Using an RPA-CRISPR/Cas12a System Combined with a Lateral Flow Assay
    Shin, Kihye
    Kwon, Soon-Hwa
    Lee, Seong-Chan
    Moon, Young-Eel
    PLANTS-BASEL, 2021, 10 (10):
  • [8] CRISPR/Cas12a linked sandwich aptamer assay for sensitive detection of thrombin
    Zhu, Fengxi
    Zhao, Qiang
    ANALYTICA CHIMICA ACTA, 2024, 1287
  • [9] Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes
    Peng, Lei
    Zhou, Jin
    Yin, Lijuan
    Man, Shuli
    Ma, Long
    ANALYTICA CHIMICA ACTA, 2020, 1125 : 162 - 168
  • [10] CRISPR/Cas12a Collateral Cleavage Activity for Sensitive 3′-5′ Exonuclease Assay
    Jeung, Jae Hoon
    Han, Hyogu
    Lee, Chang Yeol
    Ahn, Jun Ki
    BIOSENSORS-BASEL, 2023, 13 (11):